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The intrinsic viscosity [n] and the electric a, and magnetic o
polarizabilities of objects having general shape are required in the
calculation of some of the most basic properties of solid—solid composites
and fluid—solid mixtures. Specifically, the leading order virial coefficients
of diverse properties (viscosity, refractive index, dielectric constant,
magnetic permeability, thermal and electrical conductivity, and others)
can often be expressed in terms of these functionals of object shape.
These virial coefficients also provide basic input into effective medium
theories describing higher concentration mixtures. The electric and
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magnetic polarizability tensors have independent interest in applications
involving the scattering of electromagnetic and pressure waves from
objects of general shape. We present an argument that the ratio of [n] and
(@, ) (the average electric polarizability tensor trace) is an invariant to a
good approximation. Many analytical and numerical finite element results
for a variety of shapes are presented to support the conjectured relation.
Our approximate relation between [n] and (a,) complements the exact
relation between the hydrodynamic virtual mass W and the magnetic
polarizability «,, tensors.

I. INTRODUCTION

There are numerous contributions to the problem of predicting the
effective properties of inhomogeneous materials [1-3] and reviews appear
regularly on this topic. Here we focus the discussion on transport
properties [1], such as the viscosity of suspensions, dielectric constant,
refractive index, thermal conductivity, and related physical properties of
mixtures. Much of the research has been limited to the classical case of
spherical particle suspensions and composites and a few other particle
shapes that allow analytical treatment [4-20]. Even for suspensions of
hard spheres in fluids, rigorous results are limited to the first couple of
virial coefficients [4-20] and analytical bounds on the effective properties
at higher volume fractions [21, 22]. Recent progress has been made in the
numerical calculation of transport properties by finite element [23] and
Brownian dynamics methods [24], which is associated with the advent of
sufficiently powerful computational resources and faster computational
algorithms such as the conjugate gradient method [25]. These new
numerical results are very helpful in testing theoretical ideas about the
effective properties of mixtures.

Much of the previous research, even the more recent numerical work,
has focused on mixtures involving simple shapes, such as spheres, since
the overall goal has usually been the development of a theory applicable
at high volume fractions of suspended matter. The choice of simple
particle shapes is motivated by the existence of the relatively few exact
analytical results at lower concentrations, which provide a benchmark test
for the numerical calculations.

However, many real particles in fluid—solid suspensions and in solid
composites are not well represented by these simple shapes. The present
work allows for general centrosymmetric particle shape, while focusing
solely on the dilute limit. This is a natural first step towards treating
complex-shaped particle mixtures at higher concentrations. Originally,
the research was motivated by theoretical arguments, described below,
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that suggested a relation between the leading order virial coefficients for
the viscosity and conductivity of suspensions of conducting particles
having arbitrary shape. We have gathered analytical results for these
properties, which are scattered widely throughout the mathematical and
technical literature and have calculated new results as necessary (ana-
lytically and by finite element methods) to obtain a wide range of shapes
with which to check the conjectured relation. The results obtained should
have independent interest in the problem of developing a more realistic
description of the properties of mixtures in terms of a more faithful
description of the mixture components.

In Section Il we summarize classical results for the conductivity virial
expansion and discuss the relation between the leading virial coefficient,
called the intrinsic conductivity [o] and certain functionals of particle
shape that arise in other physical contexts—the electric polarizability,
magnetic polarizability, and virtual mass. All these functionals of shape
involve solving the Navier-Stokes or the Laplace equations on the
exterior of a body with various boundary conditions [26, 27]. Exact
results for these functionals are summarized for simple particle shapes to
illustrate the general effect of particle anisotropy.

Section IIl summarizes classical results for the viscosity virial expan-
sion of suspensions of particles and the virial expansion for the shear
modulus of an elastic material with inclusions. An angular preaveraging
approximation is invoked, as in previous calculations for the translational
friction of a Brownian particle [27], to relate the intrinsic viscosity [n] to
the intrinsic conductivity [o], for highly conducting inclusions. The
intrinsic viscosity is the leading order virial coefficient for the viscosity of
a dilute mixture. Examination of exact results for [n] and [o],, show that
the conjectured relation is not exact, but is a rather good approximation.
An extensive range of particle shapes is considered in this comparison. In
Section IV we pursue the universality of the [n] —[o]. relation for a
variety of complicated shapes using finite element methods. The conjec-
tured relation between [n] and [o], is found to hold to a good
approximation (* 5%) for all shapes considered. '

More general results are possible in d =2 due to general conformal
mapping methods. We exploit a mathematical identity of Pélya [26, 28],
which implies that [o] for conducting and nonconducting inclusions is
exactly related to the “transfinite diameter” C, of the inclusions. This
relation is useful since this quantity is fundamental in classical conformal
mapping theory and, consequently, this property has been extensively
investigated [26, 29, 30]. All previously known exact results for [o],, in
d =2, plus many new results, are obtained from our new relation
expressing [o],, purely in terms of the geometrical quantities, C; and the
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particle area. Numerical results for [n] in d =2 are obtained using finite
element methods. Again the predicted approximate relation between [n]
and [o]. is well confirmed. Analytical results for ellipses show that the
conjectured relation is actually exact at all aspect ratios and we conjecture
that [n] equals [o], for all shapes in two dimensions.

Section VI considers the case of flat “plate-like” objects, which
requires special analytic treatment. Plate-like particles are intermediate in
their properties between the three- and two-dimensional (3D and 2D)
cases and these problems tend to be especially difficult analytically.
Numerical finite element calculations, however, can be carried out using
methods similar to those used for other shapes (see Appendix E). This
case has important applications in the scattering of sound waves and
electromagnetic radiation through apertures and many numerical results
have accumulated in the technical literature. We summarize these con-
nections since they provide the source of predictions for [n] through our
proposed relation between [n] and [o]...

II. POLARIZABILITY, INTRINSIC CONDUCTIVITY, AND
VIRTUAL MASS

Maxwell [4a] first considered the classic problem of the conductivity o of
a particle suspension in which the suspended particles have a different
conductmty o, than the suspending medium o,. He recognized that the
change in conductmty reflected the average dipole moment induced by
the particles .on the suspending medium in response to an applied field.
For a dilute suspension of hard spheres the effect is the simple additive
sum of the effects caused by the individual particle dipoles. The effective
conductivity o of the dilute mixture then equals,

olo,=1+[3(4, - 1)/(4, +2)]¢ + O(¢*), A,=o0,/0, (2.13)

where A, is the “relative conductivity” and ¢ is the volume fraction of
suspended particles. Exact results that go beyond this classic result are
limited, however. There are effective medium calculations [3] that
attempt to extend the “virial expansion” [Eq. (2.1a)] to higher powers of
¢. Sangani [5] recently generalized Maxwell’s calculation for spherical
particles to d dimensions. The second virial coefficient for o/o, was
calculated by Levine and McQuarrie [6] for conducting spheres (A, — ),
while Jefferey [7] treated the case of arbitrary A,.

The virial expansion [Eq. (2.1a)] has been verified experimentally for
dilute suspensions of numerous substances. For example, the leading
order virial coefficient for conducting spheres equals 3. This value has
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been observed by Voet for nearly spherical iron particles (diameter = 10
pum) in linseed and mineral oils [31]. Emulsions of salt water in fuel oil
and mercury drops in different oils have also been found to be consistent
with Eq. (2.1a) where A is large [32]. The corresponding prediction for
insulating suspended spheres (A, near 0) has been observed for suspen-
sions of glass beads and sand particles in salt solutions [33] and for gas
bubbles in salt solutions [34]. The virial coefficient notably changes sign
and equals —3 in the insulating spherical particle suspension. Good
agreement with Eq. (2.1a) has also been observed in fluidized beds where
A, was tuned over a range of values [35].

At higher concentrations the independent particle approximation of
the dilute regime no longer holds, but the leading order virial coefficient
still plays a primary role in theoretical estimates of the high concentration
variation of transport properties. In the simple effective medium theories
of Bruggeman [36] and Brinkman [37], for example, the resummation of
the virial expansion for an arbitrary transport property P of a suspension
is quite generally given by,

P/IP,~(1- )" (2.1b)

where P, is the property for a pure suspending medium. Consistency at
low concentration requires that the “critical exponent” m has the same
magnitude as the leading order virial coefficient. This simple prediction,
which is derived on the basis of very simplistic reasoning, is often in
remarkably good agreement with observations in physically important
systems [31-33,38-41]. For example, Archie’s law for the conductivity of
rocks saturated with salt water [39, 41] follows directly from Egs. (2.1a)
and (2.1b). The corresponding Brinkman—Roscoe [37, 38] result has also
been cited often as a useful description of the viscosity of concentrated
suspensions. We mention these approximate calculations only to illustrate
the primary role of the leading order virial coefficient in developing a
theoretical description of mixture properties at higher concentrations.
The following development is restricted to the low concentration regime,
where such uncontrolled approximations are unnecessary.

The practically important inverse problem of determining the volume
fraction of a suspension of complicated shaped particles from electrical
measurements motivated the generalization of Eq. (2.1a) to particles
having arbitrary shape. Fricke [8] treated the case of ellipsoidal particles
and utilized a Clausius—Mosotti style [42] effective medium theory to
approximate the higher concentration regime. These effective medium
calculations are exact in the dilute regime where they reduce to a virial
expansion of the form for Eq. (2.1a).
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The low concentration o virial expansion of randomly oriented and
arbitrarily shaped particles equals [43, 44]:

olo,=1+[o]¢ + O(¢?) (2.2a)
[o] =lim,_o+ (o — 0p)/(0p) (2.2b)

where [o] is the “intrinsic conductivity.” The magnitude of [o] can be
rapidly varying for extended or flat particles depending on the relative
conductivity A_, so that the effect of adding a given amount of material to
a suspension can be greatly dependent on particle shape and composition.
It is often convenient to define virials such as [o] in terms of a number
concentration when the suspended particles have zero volume, as in the
cases of needles, plates, and idealized random walk chains, for example.

The “polarizability” a describes the average dipole moment induced
on a particle in an applied field (electric or magnetic) and the calculation
of the virial coefficient [o'] therefore requires the determination of a or at
least an average of the matrix elements defining & (see below). The
quantity « is a second rank tensor [4b,44] that depends on particle
orientation, shape, size, and the ratio of the particle property to the
matrix property for the property that is being considered [see Eqs. (2.1a)
and (2.5b)]. The average polarizability {(a ), which is 1/d times the trace
of the polarizability tensor, is a scalar that is invariant under particle
rotations [45, 46]. The polarizability has the units of volume so that the
ratio of (@) and the particle volume V,, is a scale invariant functional of
particle shape and A,. Calculation of {a) is often easier than the full
polarizability tensor e, since any three orthogonal directions can be
chosen for the field directions in the calculation of (« ). Equivalently, we
can angularly average a over all orientation angles with uniform prob-
ability [45, 46] to obtain {(a). In some applications it is useful to orient
the suspended particles, in which case the effective conductivity o of the
composite becomes explicitly dependent on e [9]. Historically, the
anisotropic case was found to be important in the design of microwave
lenses and other artificial dielectrics where large scale conducting ele-
ments are arrayed in an insulating matrix [47-50]. The anisotropic
situation is also encountered in the optical properties of sheared aniso-
tropic particle suspensions [51]. In this chapter, we emphasize the average
polarizability (a ), which is relevant to suspensions in which the particle
orientation is completely random.

In an electrostatic context the polarizability describes how the charges
of a body of dielectric constant ,, embedded in a medium having a
dielectric constant g,, are distorted in response to an applied electric field
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[42, 52]. The distorted charge distribution gives rise to a dipolar field that
reacts upon the applied field, thereby modifying the net effective field in
the proximity of the body. This connection between conductivity and the
dielectric constant is natural since Egs. (2.1) and (2.2) also describe the
dielectric constant of suspensions of particles with a relative dielectric
constant A, = ¢,/g,. Moreover, these equations apply equally well to the
magnetic permeability, diffusion coefficient (see Appendix A), and the
thermal conductivity of dilute suspensions, where the magnetic field,
concentration gradient, and the temperature gradient are the corre-
sponding “fields” [1, 2, 21d].

Although simple in principle, the calculation of the polarizability
tensor for objects of general shape is a mathematical problem of
notorious difficulty. Indeed, the ellipsoid [8, 52] is the only shape for
which exact analytic results have been obtained as a function of A,. There
have been recent numerical calculations of the polarizability tensor for
other objects in relation to Rayleigh scattering (e.g., radar) applications
[53, 54]. The situation is better for limiting values of the relative
conductivity A, where the polarizability tensor a(4A,) simplifies. For
highly conducting (superconducting) inclusions, the polarizability tensor
reduces to the electric polarizability «,

lim, _,.a(4;)=ca, (2.3a)

and [o] for randomly oriented inclusions, having a much higher conduc-
tivity than the matrix, equals,

[0, > )] =[0].={a.)/V, (2.3b)

where {e_) denotes the average electric polarizability tensor. The case of
insulating inclusions in a conducting medium corresponds formally to
A,—07, so that we have

lim, _oa(4;)=a, (2.4a)
[0(8,—0")] =[o]o = (en) 1V, (2.4b) -

where «_, is the magnetic polarizability with (a,,) as the corresponding
average. In the A, — 0" and A, — « limits [o] is simply a functional of
particle shape and spatial dimension. Many specific examples are given
below. We note that [o] is rather insensitive to particle shape when the
conductivity of the particles is similar to the embedding medium (A, =1).
In this limit [o] equals [42b],
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[o] = @, —1) + O[(A, — 1)*] (2.4c)

which is completely independent of particle shape in leading order.

The limiting relations [Egs. (2.3b) and (2.4b)], connecting the intrinsic
conductivity to the electric and magnetic polarizabilities of a conductor,
can be appreciated from a more general relation between the generalized
electric E and magnetic H field polarizability tensors, a(E) and a(H),
which allows a unified discussion of the response of complicated shaped
objects to both electrostatic and magnetostatic fields. Senior [55] has
proven the validity of the general relations,

o(E)=X(3,), o(H)=-X@A,) (2.52)

where A, and A, are the relative dielectric constant and magnetic
permeability,

A =¢le, A, =p i (2.5b)

and X is the same function for both electric and magnetic fields. A perfect
conductor (A, —> ) is “magnetically impermeable” (A“->0+), while a
perfect insulator ((A, — 0*) is formally a “magnetic conductor” (A, — c0)
[50, 56]. The relevance of the magnetic polarizability in describing the
insulating limit (A, —07) of the intrinsic conductivity is thus apparent.
Keller et al. [57] recently emphasized the equivalence of the magnetic
polarizability tensor a,, and the hydrodynamic effective mass tensor M
describing a. particle translating through an inviscid, irrotational, and
incompressible (“perfect”) liquid. The parameter M is equal to the
particle volume V,, plus the “‘added mass™ or “virtual mass”” W associated
with the kinetic energy imparted to the fluid from the particle motion,

a,=-M, M=VJI+W (2.6)

where 1 is the identity matrix. The minus sign indicates that each matrix
element is multiplied by —1. (Sometimes these tensors «,, and M are
defined to have the same sign.) The fundamental relation Eq. (2.6) was
indicated earlier by Kelvin [58] and implicitly by others [59].

Almost all hydrodynamic calculations of M assume that the particle
density is much higher than the surrounding fluid. Birkhoff and co-
workers [60-63] showed that the dipolar field disturbance induced by the
motion of particles having comparable density to the fluid medium
involve the general polarizability tensor X in Eq. (2.5a), where the field
permittivity parameter corresponding to 4, is related to the relative
density of the particle and the fluid. This generalized relation implies that
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M of low density objects (e.g., air bubbles in water) corresponds to «,
rather than «_ [60]. In the following discussion we restrict ourselves to
the more conventional case in which the moving object is assumed to
have a much higher density than the fluid. The terms effective mass and
virtual mass will then always imply the Keller—Kelvin relation [Eq. (2.6)].
A nonperturbative generalization of Eq. (2.6) to finite concentrations is
discussed in Appendix A.

It should be mentioned that the hydrodynamic applications of M are
not limited to transient hydrodynamic phenomena associated with the
forces on accelerating particles in a fluid medium [64,65]. The presence of
a body in a converging stream of an inviscid fluid, such as air in a wind
tunnel impinging on an aircraft model, gives rise to a force on the body
that is determined by the M tensor [M equals (3V,/2)I for a sphere and
the angular average of M for near-spherical and slender particles usually
differs little from the sphere value; see below] and the pressure gradient
in the channel. The force is in the direction of the pressure gradient.
Thomson (Lord Kelvin) [66] and Taylor [67] showed that this “buoyancy
drag force” is obtained even in non-simply connected spaces, like porous
media. The Kelvin-Taylor result for drag forces in “perfect” fluids is a
natural counterpart to the Stokes drag force [64] on slowly translating
particles in viscous fluids, where a shape functional similar to M arises
[see Eq. (3.10)].

The importance of Eqs. (2.3b), (2.4b), and (2.6) derives from the
extensive mathematical and technical literature relating to the calculation
of a, and M [6, 26, 46, 52, 68-76]. These functionals of object shape are
naturally encountered in the solution of the Laplace equation on the
exterior of regions of various shapes. Consequently, these shape func-
tionals have attracted a mathematical interest quite apart from technical
applications [26, 46]. For example, it has rigorously been shown that {«,)
and (M) achieve their absolute minima for a circle and sphere in d =2,3
dimensions [26, 77] of all objects having a finite area or volume,
respectively. (Presumably, a hypersphere minimizes these functionals in d
dimensions, d =2.) Numerical illustrations of this sphere minimization
property are presented below. It is also known (implicitly from the work
of Keller and Mendelson [78]) that (@, ) = —({a,,) in d =2 and that these
shape functionals have a general geometric interpretation in terms of
conformal mapping, as will be discussed in Section V below.

Payne and Weinstein [79] proved that some components of &, and M
for certain regions (having reflection symmetry in d =2 or axisymmetric
particles in d =3) are related to the capacity C of the region. The
capacity C is another shape functional related to solving the Laplace
equation on the exterior of a particle. Numerous applications of this
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quantity are summarized in [80], which also describes a probabilistic
method for calculating C by hitting a region of arbitrary shape with
Brownian paths launched from an enclosing surface. This development
makes the Payne-Weinstein relation attractive for the calculation of e,
and «,,.

Finally, we mention that exact calculations of e, and M can be made
for certain object boundaries and associated coordinate systems for which
the Laplace equation is separable [46] and for regions related to the
separable boundary cases by Kelvin inversion [4, 52b]. This leads to quite
a few intrinsic conductivity results for objects with interesting shapes that
are useful in checking numerical methods applicable to more generally
shaped regions. Some results of this kind are summarized below.

The technology literature is also a rich source of results for e, o,
and M. Apart from the relation to transport coefficients like o, €, u, and
D, mentioned above, the magnetic and electric polarization tensors have
fundamental interest because they completely determine [55-57] the
scattering of electromagnetic waves having long wavelengths relative to
the (metallic) scattering object size, this is, Rayleigh scattering [81]. It is a
crucial application to discriminate object shape to the maximum extent
possible from long wavelength radiation like radar and, needless to say,
the technical literature reflects a preoccupation with objects having the
shapes of missiles and space vehicles [53, 68]. Weather radar applications
are also important [82]. We also note that scattering of long wavelength
sound waves from hard obstacles is determined by M and the partlcle
volume V, [83-86] and that a, and M are also fundamental in the
scattering of electromagnetic and sound waves through apertures [72,
87-91]. These applications especially require the calculation of &, and M
for plate-shaped objects [92].

Next, we tabulate the components of the polarization tensors «, and
«_, for ellipsoids, since this information is important in the comparisons
below with intrinsic viscosity data. These tabulations should give the
reader some feeling for the magnitudes involved and illustrate some of
the general ideas stated above.

The ellipsoid provides the simplest example of an object having
variable shape. Appendix B summarizes the necessary mathematical and
numerical computations involved in calculating &, (ellipsoid) for a range
of principal axis radii ratios. In Figs. 2.1 and 2.2 we present the
polarizability results for ellipsoids of revolution per unit particle volume
(which actually have closed-form analytical solutions, see Appendix B).
Enough points have been calculated to make the graphs of these
quantities appear as smooth curves. The abscissa x denotes the length of
the ellipsoid along the symmetry direction relative to the axis length
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Ellipsoids of revolution
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Figure 2.1. The longitudinal (L) and transverse (T) components of the dimensionless

(normalized by the particle volume) electric polarizability tensor «, for ellipsoids of
revolution and the average of these components, the intrinsic conductivity of a conductor

[a.]’:'

normal to the symmetry axis (aspect ratio). The component of &, and a,
along the symmetry axis is denoted by L and the component normal to
the symmetry axis is denoted by T. The average polarizabilities, {(a_)/

=[o]). and (a,)/V,=[0],, are also shown. These quantities are
mvarlant under partlcle rotations and are functionals of particle shape
only. A tabulation of this numerical data for ellipsoids of revolution is
given in Table I. We give the data in the table in the dimensionless form
a/V,, since the results are then independent of the absolute particle size.
A more general tabulation for the triaxial case is given separately for «,
and o, in Tables II and III for a range of the two principal axis ratios.
All reported digits shown in Tables I-III are significant.

We observe in Figs. 2.1 and 2.2 that the averages (a,)/V, =[o]. and
(a,)/V,=[o], obtain absolute minima for x = 1. This accords with the
exact results [26, 77} mentioned above, which indicate that this minimum
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Ellipsoids of revolution
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Figure 2.2. The longitudinal (L) and transverse (T) components of the dimensionless
(normalized by the particle volume) magnetic polarizability tensor «, for ellipsoids of
revolution and the average of these components, the intrinsic conductivity of an insulator

[o]e-

is achieved in the case of a sphere for all objects having a given finite
volume. These virial coefficients are observed to be quite sensitive to the
aspect ratio x in the approach to the disk limit, but there are also
significant effects of particle asymmetry on the virial coefficients for
highly conducting needlelike (x > 1) particles. Needlelike non-conducting
inclusions lead to remarkably little change in the intrinsic conductivity.
Thus, we can understand the general experimental observation that
nonconducting asymmetric inclusions in a conducting medium often lead
to nearly the same intrinsic conductivity [93], except in the case of
platelet shaped particles [94]. This implies that the most economical
means of making a medium more insulating is through the introduction of
a small concentration of nonconducting plate-like particles. Figure 2.2
also suggests that the polarizability of very irregular nonconducting
objects, such as alkane chains and other nonconducting polymers, should
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TABLE I
Polarizability Components for Ellipsoids of Revolution, Electric and Magnetic (a,,a,,).
Aspect Prolate
Ratio
a. (L), e (T)/ L3 {o)- an(L)/V, an(T)/ L lelo
2 5.7616 2.4200 3.5339 1.2100 1.7042 1.5395
3 9.1988 2.2439 4.5622 1.1220 1.8039 1.5766
4 13.2613 2.1631 5.8625 1.0816 1.8598 1.6004
5 17.9144 2.1182 7.3836 1.0591 1.8943 1.6159
6 23.1323 2.0904 9.1043 1.0452 19171 1.6265
7 28.8946 2.0m7 11.0127 1.0358 1.9331 1.6340
8 35.1848 2.0585 13.1006 1.0293 1.9447 1.6396
9 41.98%0 2.0488 15.3622 1.0244 1.9535 1.6438
10 49.2954 2.0414 17.7927 1.0207 1.9602 1.6471
20 148.168 2.0136 50.7320 1.0068 1.9866 1.6600
30 290.342 2.0069 98.1188 1.0035 1.9931 1.6632
40 472.623 2.0042 158.877 1.0021 1.9958 1.6646
50 693.013 2.0029 232,339 1.0014 1.9971 1.6652
60 950.083 2.0021 318.029 1.0011 1.9979 1.6656
70 1,242.74 2.0016 415,581 1.0008 1.9984 1:6659
80 1,570.10 2.0013 524.701 1.0006 1.9987 1.6660
% 1,931.43 2.0010 645.147 1.0005 1.9990 1.6661
100 2,326.12 2.0009 776.710 1.0004 1.9991 1.6662
200 8,013.36 2.0002 2,672.45 1.0001 1.9998 1.6665
300 16,675.8 2.0001 5,559.95 1.0001 1.9999 1.6666
400 28,145.8 2.0001 9,383.29 1.0000 1.9999 1.6666
500 42,316.9 2.0000 14,106.9 1.0000 2.0000 1.6666
600 59,112.3 2.0000 19,705.4 1.0000 2.0000 1.6666
700 78,472.2 2.0000 26,158.7 1.0000 2.0000 1.6667
800 100,348.0 2.0000 33,450.8 1.0000 2.0000 1.6667
900 124,700.0 2.0000 41,568.2 1.0000 2.0000 1.6667
1000 151,494.0 2.0000 50,499.4 1.0000 2.0000 1.6667
Reciprocal Oblate
Aspect
Ratio a (L)/V, a(T)/V, oo an(L)/V, an(T)V, [elo
2 1.8968 4.2301 3.4524 2.1151 1.3096 1.5781
3 1.5738 5.4853 4.1815 2.1426 1.2230 1.7295
4 1.4212 6.7486 4.9728 3.3743 1.1740 1.9074
5 1.3325 8.0155 5.7878 4.0078 1.1425 2.0976
6 1.2746 9.2844 6.6145 4.6422 1.1207 2.2945
7 1.2338 10.5544 7.4476 5.2772 1.1047 2.4955
8 1.2036 11.8253 8.2847 5.9126 1.0924 2.6991
9 1.1802 13.0966 9.1245 6.5483 1.0827 2.9045
10 1.1617 14.3683 9.9661 7.1841 1.0748 3.1112
20 1.0797 27.0935 18.4222 13.5467 1.0383 5.2078
30 1.0529 39.8234 26.8999 19.9117 1.0258 7.3211
40 1.0396 52.5545 35.3829 26.2773 1.0194 9.4387
50 1.0316 65.2862 43.8680 32.6431 1.0156 11.5581
60 1.0263 78.0181 52,3541 39.0090 1.0130 13.6783
70 1.0225 90.7501 60.8409 45.3750 1.0111 15.7991
80 1.0197 103.482 69.3280 51.7411 1.0098 17.9202
%0 1.0175 116.214 77.8154 58.1072 1.0087 20,0415
100 1.0158 128.946 86.3030 64.4733 1.0078 22.1630
200 1.0079 256.269 171182 128.134 1.0039 43.3809
300 1.0052 383.593 256.064 191,796 1.0026 64.6007
400 1.0039 510917 340.946 255.458 1.0020 85.8209
500 1.0031 638.241 425.828 319.120 1.0016 107.041
600 1.0026 765.565 510.711 382.782 1.0013 128.261
700 1.0022 892.889 595.593 446.444 1.0011 149.482
800 1.0020 1,020.21 680.476 510.106 1.0010 170.702
900 1.0017 1,147.53 765.358 573.768 1.0009 191.923
1000 1.0016 1,274.86 850.241 637.430 1.0008 213.144
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TABLE 11
Components of the Electric Polarizability Tensor e, for Triaxial Ellipsoids

a, as a a,(ll)/Vp ae(ZZ)IVp a,(33)/VP [U]w

1 2 3 1.7345 3.7432 6.3979 3.9585
1 2 4 1.6587 3.5115 8.9007 4.6903
1 2 5 1.6162 3.3791 11.721 5.5723
1 2 6 1.5894 3.2950 14.847 6.5774
1 2 7 1.5714 3.2375 18.268 7.6924
1 2 8 1.5586 3.1962 21.974 8.9098
1 2 9 1.5490 3.1654 25.959 10.224
1 2 10 1.5418 3.1417 30.215 11.633
1 2 20 1.5140 3.0490 86.743 30.435
1 2 50 1.5030 3.0110 390.06 131.52

1 2 100 1.5009 3.0034 1,283.9 429.47

1 2 300 1.5001 3.0005 9,015.0 3006.5

1 2 500 1.5001 3.0002 22,7170 7574.0

1 2 1,000 1.5000 3.0001 80,706.0 26903.0

1 3 4 1.4979 5.0419 7.4586 4.6662
1 3 5 1.4548 4.7842 9.6534 5.2975
1 3 6 1.4275 4.6178 12.061 6.0356
1 3 7 1.4089 4.5027 14.676 6.8626
1 3 8 1.3956 4.4190 17.491 7.7688
1 3 9 1.3857 4.3560 20.503 8.7483
1 3 10 1.3781 4.3070 23.706 9.7970
1 3 20 1.3486 4.1107 65.575 23.678
1 3 50 1.3367 4.0258 285.32 96.894
1 3 100 1.3344 4.0081 923.91 309.75

1 3 300 1.3335 4.0012 6,377.3 21275

1 3 500 1.3334 4.0005 15,980.0 5328.5

1 3 1,000 13333 4.0001 56,424.0 18809.0

1 4 5 1.3772 6.3308 8.6255 5.4445
1 4 6 1.3492 6.0582 10.667 : 6.0250
1 4 7 1.3300 5.8680 12.869 6.6892
1 4 8 1.3162 5.7286 15.228 7.4244
1 4 9 1.3059 5.6227 17.739 8.2227
1 4 10 1.2979 5.5400 20.400 9.0794
1 4 20 1.2667 5.2013 54.705 20.391
1 4 50 1.2538 5.0486 231.29 79.199
1 4 100 1.2512 5.0155 738.28 248.18

1 4 300 1.2502 5.0023 5,020.9 1675.7

1 4 500 1.2501 5.0009 12,520.0 4175.6

1 4 1,000 1.2500 5.0003 43,979.0 14661.0

1 5 6 1.3038 7.6145 9.8349 6.2511
i 5 7 1.2841 7.3327 11.785 6.8008
1 5 8 1.2698 7.1249 13.864 7.4198
1 5 9 1.2591 6.9661 16.069 8.0983
1 5 10 1.2508 6.8414 18.397 8.8300
1 5 20 1.2180 6.3225 48.043 18.528
1 5 50 1.2041 6.0802 198.00 68.430
1 5 100 1.2013 6.0260 623.89 210.37

1 5 300 1.2002 6.0040 4,186.8 1,398.0

1 5 500 1.2001 6.0016 10,396.0 3,467.7

1 5 1,000 1.2000 6.0005 36,349.0 12,118.0

1 6 7 1.2544 8.8954 - 11.065 7.0718
1 6 8 1.2397 8.6071 12.955 7.6009
1 6 9 1.2287 8.3860 14.952 8.1892
1 6 10 1.2201 8.2115 17.055 8.8289
1 6 20 1.1859 7.4754 43.525 17.395
1 6 50 11m 7.1214 175.29 61.195
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Table II (Continued)

2, a; a; a(11)/V, e (2)1V, a,(33)1V, [o]=

1 6 100 1.1681 7.0399 545.81 184.67

1 6 300 1.1669 7.0062 3,618.4 1,208.8

1 6 500 1.1667 7.0025 8,950.0 2,986.0

i 6 1.000 1.1667 7.0007 31,163.0 10,390.0

1 7 8 1.2188 10.174 12.308 7.9005
1 7 9 1.2075 9.8815 14.155 8.4148
1 7 10 1.1987 9.6498 16.094 8.9809
1 7 20 1.1632 8.6607 40.253 16.692
1 7 50 1.1477 8.1728 158.74 56.021
1 7 100 1.1444 8.0576 488.85 166.01

1 7 300 1.1431 8.0091 3,204.4 1,071.2

1 7 500 1.1429 8.0037 7.897.7 2,635.6

1 7 1,000 1.1429 8.0011 21,395.0 9,134.8

1 8 9 1.1920 11.452 13.558 8.7343
1 8 10 1.1830 11.155 15.373 9.2375
1 8 20 1.1464 9.8790 31.772 16.265
1 8 50 1.1301 9.2348 146.10 52.157
1 8 100 1.1266 9.0792 445.32 151.84

1 8 300 1.1252 9.0126 2,888.4 966.19

1 8 500 1.1251 9.0052 7,095.0 2,368.3

1 8 1,000 1.1250 9.0015 24,524.0 8,178.2

1 9 10 1.1710 12.728 14.814 9.5714
1 9 20 1.1335 11.130 35.824 16.029
1 9 50 1.1165 10.307 136.12 49.182
1 9 100 1.1128 10.105 410.89 140.70

1 9 300 1.1114 10.017 2,638.5 £83.23

1 9 500 1.1112 10.007 6,460.9 2,157.3

1 9 1,000 11111 10.002 22,259.0 7,423.5

1 10 20 1.1233 12.415 34.255 15.931
1 10 50 1.1057 11.392 128.01 46.839
1 10 100 1.1018 11.135 382.90 131.71

1 10 300 1.1003 11.022 2,435.6 815.92

1 10 500 1.1001 11.009 5.946.4 1,986.1

1 10 1,000 1.1000 11.002 20,423.0 6,811.8

1 20 50 1.0579 22911 89.896 37,955
1 20 100 1.0527 21.715 250.13 90.969
1 20 300 1.0504 21.128 1,473.0 498.42

1 20 500 1.0502 21.055 3,510.9 1,177.6

1 20 1,000 1.0501 21.016 11,763.0 3,928.3

1 50 100 1.0243 57.057 161.17 73.084
1 50 300 1.0208 52.284 819.03 290.78

1 50 500 1.0203 51.582 1,808 637.82

1 50 1,000 1.0201 51.188 5,938.5 1,996.9

1 100 300 1.0112 107.87 568.97 - 225.95

1 100 500 1.0105 104.30 1,226.9 - 444.09

1 100 1000 1.0102 102.14 3,708.3 1,270.5

1 300 500 1.0043 345.37 744.03 363.47

1 300 1,000 1.0037 318.56 1,984.9 768.18

1 500 1,000 1.0024 559.34 1,589.2 716.52

1 1,000 500 1.0024 1589.0 559.36 716.47
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TABLE III

Components of the Magnetic Polarizability Tensor e, for Triaxial Ellipsoids
a, a; ay a,(11)/V, an(22)/V, a2, (33) 1V felo
1 2 3 2.3615 1.3645 1.1852 1.6371
! 2 4 2.5181 1.3981 1.1265 1.6809
1 2 5 2.6229 1.4203 1.0932 1.7122
1 2 6 2.6965 1.4357 1.072 1.7348
1 2 7 2.7501 1.4469 1.0579 1.7516
1 2 8 2.7903 1.4553 1.0476 1.7644
1 2 9 2.8213 1.4618 1.0400 1.7744
1 2 10 2.8457 1.4669 1.0342 1.7823
1 2 20 2.9455 1.4880 1.0116 1.8151
1 2 50 2.9879 1.4972 1.0025 1.8292
1 2 100 2.9963 1.4991 1.0007 1.8321
1 2 300 2.9994 1.4998 1.0001 1.8332
1 2 500 2.9997 1.4999 1.0000 1.8333
1 2 1000 2.9999 1.4999 1.0000 1.8333
1 3 4 3.0083 1.2474 1.1548 1.8035
1 3 5 3.1988 1.2642 1.1155 1.8595
1 3 6 3.3393 1.2764 1.0904 1.9020
1 3 7 3.4455 1.2854 1.0731 1.9347
1 3 8 3.52M7 1.2924 1.0606 1.9603
1 3 9 3.5926 1.2979 1.0512 1.9806
1 3 10 3.6447 13023 1.0440 1.9971
t 3 20 3.8682 1.3214 1.0154 2.0684
1 3 50 3.9698 1.3304 1.0035 2.1013
1 3 100 3.9907 1.3324 1.0010 2.1081
1 3 300 3.9986 1.3332 1.0001 2.1107
1 3 500 3.9994 1.3332 1.0000 2.1109
1 3 1000 3.9998 1.3333 1.0000 2.1111
1 4 5 3.6510 1.1875 11311 1.9899
1 4 6 3.8638 1.1976 1.1034 2.0550
1 4 7 4.0303 1.2054 1.0842 2.1067
1 4 8 4.1626 1.2114 1.0702 2.1481
1 4 9 4.2694 1.2163 1.0597 2.1818
1 4 10 4.3568 1.2202 1.0515 2.2095
1 4 20 4.7497 1.2380 1.0186 2.3354
1 4 50 4.9407 1.2469 1.0043 2.3974
1 4 100 4.9816 1.2490 1.0013 2.4107
1 4 300 4.9973 1.2498 1.0001 2.4158
1 4 500 4.9989 1.2499 1.0000 2.4163
1 4 1000 4.9997 1.2499 1.0000 2.4166
1 s 6 4.2917 11511 1.1131 2.1854
1 5 7 4.5202 1.1579 1.0927 2.2570
1 5 8 4.7063 1.1632 1.0777 2.3158
1 5 9 4.8595 1.1676 1.0663 2.3645
1 5 10 4.9869 1.1711 1.0574 2.4052
1 5 20 5.5872 1.1878 1.0212 2.5988
1 s 50 5.8990 1.1968 1.0050 2.7003
1 5 100 5.9683 1.1989 1.0016 2.7230
1 5 300 5.9953 1.1998 1.0002 2.7318
1 5 500 5.9981 1.1999 1.0000 2.7327
1 5 1,000 5.9994 1.1999 1.0000 2.7332
1 6 7 4.9312 1.1266 1.0993 2.3857
1 6 8 5.1714 1.1314 1.0836 2.4622
1 6 9 5.3727 1.1353 1.07M16 2.5266
1 6 10 5.5428 1.1386 1.0622 2.5813
1 6 20 6.3796 1.1544 1.0235 2.8525
1 6 50 6.8434 1.1633 1.0057 3.0042

R TIN
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Table 111 (Continued)

a, a3 as an(11)/V, oy (22)/V, an(33)/V, e}

1 6 100 6.9502 1.1655 1.0018 3.0392
1 6 300 6.9926 1.1664 1.0002 3.0531
1 6 500 6.9970 1.1665 1.0001 3.0546
1 6 1,000 6.9991 1.1666 1.0000 3.0553
1 7 . 8 5.5700 1.1090 1.0884 2.5891
1 7 9 5.8192 1.1125 1.0760 2.6693
1 7 10 6.0327 1.1156 1.0662 2.7382
1 7 20 7.1272 1.1305 1.0254 3.0944
1 7 S0 1.7726 1.1394 1.0063 3.3061
1 7 100 7.9269 1.1416 1.0020 3.3569
1 7 300 7.9890 1.1426 1.0003 3.3774
1 7 500 7.9956 1.1427 1.0001 3.3795
1 7 1,000 7.9987 1.1428 1.0000 3.3805
1 8 9 6.2083 1.0956 1.0796 2.7945
1 8 10 6.4647 1.0984 1.0695 2.8776
1 8 20 7.8308 1.1126 1.0271 3.3236
1 8 50 8.6858 1.1214 1.0068 3.6047
1 8 100 8.8978 1.1237 1.0022 3.6746
1 8 300 8.9846 1.1248 1.0003 3.7032
1 8 500 8.9937 1.1249 1.0001 3.7063
1 8 1,000 8.9982 1.1249 1.0000 37077
1 9 10 6.8463 1.0852 1.0723 3.0013
1 9 20 8.4920 1.0987 1.0287 3.5398
1 9 50 9.5822 1.1074 1.0074 3.8990
t g 100 9.8625 1.1098 1.0024 3.9916
1 9 300 9.9790 1.1109 1.0003 4.0301
1 9 500 9.9915 1.1110 1.0001 4.0342
1 9 1,000 9.9975 1.1110 1.0000 4.0362
1 10 20 9.1126 1.0876 1.0300 3.7434
1 10 50 10.461 1.0962 1.0078 4.1885
1 10 100 10.820 1.0986 1.0026 . 43073
1 10 300 10.972 1.0997 1.0004 4.3576
1 10 500 10.988 1.0999 1.0001 4.3630
1 10 1,000 10.996 1.0999 1.0000 4.3656
1 20 50 18.258 1.0456 1.0112 6.7718
1 20 100 19.980 1.0482 1.0040 7.3444
1 20 300 20.829 1.0496 1.0006 7.6267
1 20 500 20.929 1.0498 1.0002 7.6599
1 20 1,000 20979 1.0499 1.0000 7.6764
1 50 100 42.139 1.0178 1.0062 14.721
1 50 300 49.147 1.0194 1.0012 17.056
1 S50 500 50.191 1.0197 1.0005 17.404
1 50 1,000 50.751 1.0199 1.0001 17.590
1 100 300 90.683 1.0093 1.0017 30.898
1 100 500 96.135 . 1.0096 1.0008 32.715
1 100 1,000 99.404 1.0098 1.0002 33.805
1 30 500 235.88 1.0029 1.0013 79.295

1 300 1,000 274.51 1.0031 1.0005 92,172
1 500 1,000 413.72 1.0017 1.0006 138.58
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increase in simple proportion to volume (molecular weight) for homolo-
gous molecular series, since the change in shape will not appreciably
affect the intrinsic conductivity. This effect is observed in gas-phase
polarizability estimates on normal alkanes, based on dielectric constant
and refractive index measurements [43]. Corresponding gas-phase mea-
surements on conjugated polymeric systems, on the other hand, exhibit a
rapidly increasing polarizability with molecular weight [43], in accord with
the calculations of «, and the simplistic view of such polymers as
“‘conductors.” The variation of the colors of dyes with molecular weight
[95] and certain attractive forces between long chain molecules [96] can
be similarly understood using this kind of picture of insulating and
conducting polymers and geometrical estimates of the polarizability.
There are other shapes for which @, and «, can be determined
exactly. Most of these additional exact results are summarized by Schiffer
and Szegd [46], but are not well known in the physical science literature.
(This is probably due to the rather complicated mathematical form of
these exact analytical results.) As an example, we indicate exact a,
results, per unit particle volume, for a torus in Fig. 2.3, where the symbol
L again denotes the axis of symmetry. The abscissa is the ratio of the
overall torus radius b to the radius a of the tube forming the body of the
torus itself. For example, the limit a— 0 for a fixed torus radius b gives
an infinitely thin wire ring. Table IV tabulates the corresponding
numerical values of the polarizability components used in Fig. 2.3, based
on previous tabulations of the equivalent of these numbers by Belovitch
and Boersma [97]). The present tabulation is given in a dimensionless
form that avoids the problem of the choice of units. Further tabulations
of analytic results for the electric and magnetic polarizability tensors,
corresponding to other shapes [46], will require careful numerical work.

III. INTRINSIC VISCOSITY AND ITS RELATION TO INTRINSIC
CONDUCTIVITY

An increase of the viscosity of suspensions and the shear modulus of
solids is generally observed upon adding rigid particles to the medium.
The introduction of rigid inclusions perturbs the stress field of the sheared
pure medium since locally the field lines cannot penetrate the hard
inclusions. There is evidently a qualitative analogy with the electrical
conduction problem in a suspension of highly conducting particles where
the electric field lines are similarly screened from the interiors of the
conducting particles. Many authors have commented on the mathematical
resemblance between electrical polarization and linearized flow theory
calculations [7, 98, 99], which follow as a consequence of this physical
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Figure 2.3. The longitudinal (L) and transverse (T) components of the dimensionless
(normalized by the particle volume) electric polarizability tensor «, for tori and the average
of these components, the intrinsic conductivity [o]., plotted versus the ratio a/b where b is
the overall radius of ‘the torus and a is the radius of the torus tube. The ratio a/b=1
corresponds to a torus without a hole.

analogy. In the following we develop an approximate relation between
the electrical conductivity and suspension viscosity problems.

Einstein [10a], as part of his investigation of the molecular nature of
matter, first calculated the incremental increase of the viscosity n of a
dilute hard sphere suspension:

niny=1+(3)d +0(¢?) B ERY

where 7, is the pure solution viscosity. (Notably, his original calculation
did not give the correct $ coefficient [10a] in Eq. (3.1) and was later
corrected in light of experimental observations by Bancelin [100].) The
leading virial coefficient is the intrinsic viscosity [n], defined by

[n]=lim,_ 4+ (n— M)/ (ny®) (3.2)
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TABLE IV
Electric Polarizability Components for Torus

a/b a (L)/V, a (T)/V, o]
0.05 1.998 131.851 88.567
0.10 1.995 43.641 29.759
0.15 1.991 24.051 16.698
0.20 1.986 16.282 11.517
0.25 1.983 12.313 8.870
0.30 1.980 9.971 7.307
0.35 1.978 8.455 6.296
0.40 1.977 7.409 5.598
0.45 1.978 6.651 5.093
0.50 1.980 6.083 4.716
0.55 1.985 5.645 4.425
0.60 1.991 5.300 4.197
0.65 1.999 5.024 4.016
0.70 2.008 4.799 3.869
0.75 2.020 4.614 3.750
0.80 2.033 4.461 3.652
0.85 2.047 4.333 3.57
0.90 2.063 4.226 3.505
0.95 2.079 4.135 3.450
0.96 2.083 4.118 3.440
0.97 2.086 4.103 3.431
0.98 2.090 4.087 3.422
0.99 2.094 . 4.073 3.413
1.00 2.097 4,058 3.405 .

Experiments on nearly spherical particles in low-concentration suspen-
sions [¢ < O(1%)] commonly yield a value of [n]=2.7, which is slightly
higher [101] than the Einstein estimate [n] =2.5. This small deviation is
often ascribed to small particle asphericity or particle clustering [101] and,
at any rate, the revised Einstein result [Eq. (3.1)] is a good approxi-
mation.

Rayleigh [102], Goodier [17], and Hill and Power [103] pointed out a
fundamental analogy between the hydrodynamics of suspensions and the
elastostatics of incompressible solids with rigid inclusions, which implies
that Einstein’s virial expansion for the viscosity of hard sphere suspen-
sions also describes the shear modulus G virial expansion [17, 19],

GIGy=1+(3)é +O(¢?) (3.3)

for an elastic continuum of modulus G, containing stiff spherical inclu-
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sions at low concentration. The intrinsic shear modulus [G] is defined by
the limit,

[Gl=limy_+(G — G,)/(Go¢) (3.4)

For compressible spherical particles [G] depends on the Poisson ratio » of
the particle [20], -

[G]=(3) (1-2Av)/(1-10Av/3), Av=w—1 (3.5)

where v— ; in the incompressible limit. Derivation of Eq. (3.5) assumes
that the matrix material always remains in contact with the inclusion
(“sticks™) under deformation. A tabulation of experiments from a variety
of sources indicates that the shear modulus and suspension viscosity have
a common concentration dependence [104],

G(¢)/G, = n(¢)/m (3.6)

for nearly spherical, rigid inclusions in an incompressible elastic matrix
and a Newtonian fluid, respectively. This behavior is consistent with the
simple incompressibility assumption (v=1) and the viscoelastic and
elastostatic analogy of Rayleigh [102). It is emphasized that Eq. (3.6) is
observed to hold regardless of the concentration of the suspended matter!
We note that the simple relation between intrinsic viscosity and intrinsic
shear modulus is limited to spherical particles and an incompressible
suspending medium (see Appendix C).

Experience also indicates that the addition of “softer”” materials to
liquids and solids does not generally increase the viscosity and shear
modulus. This physical situation is analogous to the addition of insulating
material to a conducting medium [42a], since the inclusions are “perme-
able” to the shear-induced stress field lines in the suspending fluid or solid
medium. In the extreme case, where the particle inclusions are highly
deformable and the matrix is incompressible, [G] becomes [18]

[Gly-3=—3, [Gli-z=—2 (3.7)

so that the solid becomes softer with an increasing volume fraction of soft
inclusions. The magnitude of [G] for holes is comparable to [¢], for an
insulator in a conducting matrix [see Eq. (2.1)].

The introduction of liquid drops into another viscous fluid or a solid
introduces some important additional features. In this case, momentum
can propagate into the interior of the droplet and induce internal
circulation within the droplet, so that the dissipation is altered from the
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hard sphere case. In many physical circumstances surface tension or
internal pressure tends to make the drop resist deformation, however.
Taylor [15] showed that the intrinsic viscosity of idealized indeformable
liquid drops of viscosity 74, equals

[n] = 1 + %[Z'q/(l + zn)]’ Z‘r; = ndrop/no (3'8)

Note that [n] reduces to 1 in the “bubble” limit z,— 07, rather than
becoming negative. Experiments on liquid drops suspended in another
liquid are often consistent with Eq. (3.8), although there can be
complications with surface tension effects (impurities and small droplet
size [105]), which can invalidate Eq. (3.8). In the complementary
idealized case, where the spherical membrane surrounding the droplet is
highly deformable, it is found that [106]

[l = = 3[1 - $2,/(1+32,)] (3.9

which reduces to the hole limit —$ for the elastic problem [Eq. (3.7)] for
z,— 0 and the hard sphere result (z,— =) of Einstein. Equation (3.9),
which is comparable to Maxwell’s formula [Eq. (2.1a)] for electrical
conductivity, has been found to be a reasonable idealization for suspen-
sions of red blood cells and other deformable particles [106]. The rest of
this chapter considers only rigid particles. The brief discussion above was
meant only to illustrate some of the complications that can arise when
considering real particle mixtures.

Despite the fundamental importance of [n] in determination of
molecular shape [107], there are few analytical calculations of [7]
corresponding to nonspherical objects. Onsager [11] long ago calculated
asymptotic results for long hard prolate ellipsoids, and these results were
later generalized by Saito [12a] to analytical estimates for arbitrary aspect
ratios. Kirkwood and Riseman [108] and Debye and Bueche [109]
estimated [n] for random coil polymer chains, but these calculations
involved uncontrolled approximations. Rallison [13] and Haber and
Brenner [14] recently obtained exact results for triaxial ellipsoids. The
formalism required to treat the triaxial ellipsoid case is quite sophisticated
and treatment of these more general shapes is necessarily complicated.
The reason for the limited progress in calculating [n], relative to [o], is
simple: Solution of the steady-state Navier-Stokes equation on the
exterior of the hard particles is a significantly more difficult technical
problem than the corresponding solution of the Laplace equation.

Recently, Hubbard and Douglas [27] observed an interesting relation
between hydrodynamic and electrostatic problems that suggests a route
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for developing a direct approximate relation between [n] and [o]. They
observed that the angular average of the Green’s function for the steady-
state free space Navier-Stokes equation equals the Green’s function of
the free space Laplacian [27]. From this observation and the physical
angular averaging associated with the Brownian particle diffusion process,
they deduced that the scalar translational friction coefficient of arbitrarily
shaped rigid paricles approximately equals

fr=6mnC (3.10)

where C is the electrostatic capacitance. (The parameter C is the
Newtonian capacity as opposed to the logarithmic capacity discussed in
Section V. The units of C are chosen so that a sphere of radius R has a
capacitance C = R.) The capacitance C governs the far field decay of the
solution of Laplace’s equation where the solution equals 1 on the
boundary and approaches zero at great distances from the boundary [26,
80]. Equation (3.10), which is consistent (within ~1% accuracy) with
exactly known values of f;, serves as an explicit connection between
hydrodynamic and electrostatic problems. Direct comparisons of the
average stress and electrostatic (or thermal) dipole coefficients [110-112]
in the calculation of [n] and [o].., respectively, suggests that [n] is simply
proportional to [o], within angular averaging. In other words, it scems
reasonable to preangularly average the steady-state Navier—Stokes
Green’s function so that the hydrodynamic problem reduces to the
solution of the Laplace equation on the exterior of the particle as in the
former calculations relating translational friction and capacity [27]. This
procedure seems reasonable for a dilute particle suspension of randomly
oriented particles, since [] is then an invariant under suspension
rotations. In this chapter we are interested in checking the numerical
accuracy of this relation. The existence of small numerical discrepancies
in exact analytical results, described below, show that this relation is not
exact, but rather a very good approximation for objects having diverse
shapes.

The constant of proportionality between [n] and [o], can be fixed by
exact calculations for sphere suspensions [5, 113] in d spatial dimensions

7] =[(d +2)/(2d)}[o]. (3.11)

We choose the sphere case to determine the proportionality constant
since the preaveraging argument for the Oseen tensor leads to exact
results for spheres. Of course, this is a rather trivial case and other shapes
must be considered to check the conjectured relation [Eq. (3.11)] [114].

Further motivation of the approximation [Eq. (3.11)], derives from
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calculations by Kanwal [115], which show an exact relation between the
rotational friction coefficient f; and «, for a certain class of bodies

fr(T)=2a.(T)m, (3-12)

corresponding to the rotation of a body of revolution, having an
otherwise arbitrary profile, about its axis of symmetry. The parameter
a.(7T) is the polarizability component normal to the axis of symmetry.
Exact fo(T) results for a variety of complex-shaped particles can be
directly obtained from Eq. (3.12) and from tabulations of « (T") [46].

Riseman and Kirkwood [116] noted that a proportionality relation
should exist between the rotational friction coefficient and [5}], and this
observation is consistent with the approximation in Egs. (3.11) and
(3.12). The rotational friction coefficient becomes difficult to measure
and to calculate for nonsymmetric objects and for flexible objects so we
do not pursue this connection further.

Brenner [117] developed the necessary mathematical machinery for
calculating [n] for rigid axisymmetric particles. It is useful to utilize this
formalism to obtain some exact results that can be tested against Eq.
(3.11). The particle shape made from two touching spheres of radius a is
an interesting test case. Exact calculation, using the formalism of Brenner
[117] and associated results for the stress dipole due previously to Wakiya
[118], gives an exact value for the intrinsic viscosity of two touching and
rigidly joined spheres

[7] = 3.4496 - - - (3.13)

(We note that the value of [n] given on p. 263 of [117] is incorrect.) An
exact calculation of e, (and thus implicitly [o],) for touching spheres is
summarized by Schiffer and Szegd [46]. The electrical polarizability
components along the symmetry axis a,(L) and normal to the symmetry
axis a,(7T") equal

a(L)=16ma’t(3), @« (T)=6mwa’(3) (3.14a)

where ¢ is the Riemann zeta function, that is {(3)=1.20206---.The
intrinsic conductivity [o],, for touching spheres is then

: — 3
[0].=7¢(3)/2=4.2072--, V,=8wa’/3 (3.14b)

Equations (3.13) and (3.14) imply that the ratio [n]/[o] for touching
spheres equals
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[n}/[o]. =0.820--- (3.15)
which agrees well with the estimate from Eq. (3.11)
[n)/[0]).=2=0.833--- (3.16)

We also compare the exact result to recent bead model calculations of [7]
for touching spheres by de la Torre and Bloomfield [119]. They find
[n] =3.493 for touching spheres, which is accurate to within 1% in
comparison with the exact result [Eq. (3.13)].

Exact polarizability results are also known for the disk and needle
limits of an ellipsoid of revolution. For a disk of radius a the polarizability
components [46] and [o], in number density units equal

e (L)=0, a/(T)=16a/3, [o].=324/9 (3.17)

and from the formalism of Brenner [117] we can also obtain an exact
calculation of the intrinsic viscosity of a disk as

[n] = 1284%/45 (3.18)

which is also given in number density units. This result is probably known
but we could not find a reference to it. For a disk we then obtain the
exact ratio

[n}/[o]. =0.8 (3.19)

which is rather close to the approximation [Eq. (3.11)].

In the opposite needle limit (x— «), corresponding to an extended
prolate ellipsoid, the asymptotic scaling of [o], with x can be deduced
analytically

[0]). ~1x*/log(x) (3.20)

where x is the ratio of the semimajor axis length to the semiminor axis
length. Onsager [11] calculated the corresponding asymptotic prolate
ellipsoid result for [n] as

] ~ x*/log(x) (3.21)

which is consistent with more general calculations given later by Saito
[12]. The exact limiting ratio for [n]/[o].. for a needle (x — «) then equals

[n}/[o].=0.8 (3.22)
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which is identical to the ratio obtained for a disk. The ratio [n}/[o].. is
thus found to be nearly invariant for a significant range of particle shapes,
as expected from Eq. (3.11). In Fig. 2.4a we plot log [n] versus log [o].,
for a wide range of aspect ratios for prolate ellipsoids of revolution, while
Fig. 2.4b shows a similar graph for oblate ellipsoids of revolution, where
the abscissa is now the inverse of the aspect ratio. The straight line is a fit
that gives an average value of 0.8 for the intrinsic viscosity/conductivity
ratio. Table V gives the numerical data shown in Fig. 2.4, where the [n]
results are taken from the original tabulation of Scheraga [120a].

The information required to obtain [n] for triaxial ellipsoids is also
known, although this information is rather inaccessible because of the
complicated mathematical formalism that these calculations involve. The
necessary formulas for the components of the electric polarizability [52a]
are summarized in Appendix B and a summary of the necessary results of
Haber and Brenner [14] for [n] are provided in Appendix C. Tabulations
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Figure 2.4. The intrinsic viscosity [n] versus the intrinsic conductivity [o]., for ellipsoids
of revolution. The scales are logarithmic (base 10): (a) prolate and (b) oblate.
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Figure 2.4. (Continued)

of these virial coefficients, which should be useful in applications, are
given in Table VI.

We observe from Tables V and VI that all the ellipsoid data is nearly
- consistent with the ratio given in Eq. (3.16)

[)/[o].. = 0.79 £ 0.04 | (3.23)

so that [n]/[o].. is an invariant to within a 5% accuracy. The angular
averaging approximation is not as accurate for [n] as in previous
applications to f; [27, 80], but Eq. (3.16) is sufficiently accurate for many
practical applications since measurement and numerical calculation errors
are often comparable to the 5% inaccuracy indicated by Eq. (3.23).
Equation (3.23) also holds for the spherical dumbbell at arbitrary
separations. The dumbbell is defined by two identical spheres connected
by a straight wire of zero thickness and fixed length. In the calculation of
the polarizability the spheres are uncharged and the wire has zero
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TABLE V
Intrinsic Viscosity and Intrinsic Conductivity for Ellipsoids of Revolution
Aspect Prolate Oblate
Ratio
(x,1/x) [o]. [n] ll/lol. ol [n] [nl/le]).
2 - 3.5339 2908 0.82 3.4524 2.854 0.83
3 4.5622 3685 0.81 4.1815 3431 0.82
4 5.8625 4663 0.80 4.9728 4.059 0.82
5 7.3836 5806 0.79 5.7878 4.708 0.81
6 9.1043 7.099  0.78 6.6145 5.367 0.81
7 11.013 8533 077 1.4476 6.032 0.81
8 13.101 10.10 0.77 8.2847 6.700 0.81
9 15.362 11.80 0.77 9.1245 73711 0.81
10 17.793 13.63 0.77 9.9661 8.043 0.81
12 23.146 17.67 0.76 11.653 9.391 0.81
14 29.134 22.19 0.76 13.343 10.74 - 0.80
16 35.738 27.18 0.76 15.035 12.10 0.80
18 42.942 32.63 0.76 16.728 13.45 0.80
20 50.732 38.53 0.76 18.422 14.80 0.80
25 72.701 55.19 0.76 22.660 18.19 0.80
50 232.34 176.8 0.76 43.868 35.16 0.80
100 776.71 593.7 0.76 86.303 69.10 0.80
300 5,560.0 4,279.0 0.77 256.06 204.9 0.80

electrical resistance, while for the intrinsic viscosity calculation the wire
has a vanishing hydrodynmic resistance. Brenner [117] summarized the
information required to calculate [n] for a dumbbell and an exact
calculation of [o],, for the dumbbell is given in Appendix D.

We define the quantity r, to be the ratio of the distance between the
centers of the spheres to their diameters, which completely characterizes
the shape of the spherical particle dumbbell. It is then found that the
value of [n] is approximately quadratic in r,. A useful approximate
formula for [r], covering the range 1<r, <10, is given by

[7]= 2.5+ (1.037 - 0.3196))r>

(3.24)
A=(r,/3){(1 +r1,/3)
which holds to about a 3% accufacy. Exact results for [n] are tabulated in
Table VII and the asymptotic variation of [n] for a dumbbell at large
separation equals

[]~2r3, r,—ow (3.25)
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TABLE VI
Intrinsic Viscosity and Intrinsic Conductivity for Triaxial Ellipsoids
a a; a3 lo)s ) (n)/[o]=
1 2 3 3.9585 3.2454 0.82
1 2 4 4.6903 3.8027 0.81
1 2 5 5.5723 4.4704 0.80
1 2 6 6.5774 5.2291 0.80
1 2 7 7.6924 6.0695 0.79
1 2 8 8.9098 6.9864 0.78
1 2 9 10.225 7.9765 0.78
1 2 10 11.633 9.0372 0.78
1 2 20 30.436 23.227 0.76
1 2 50 131.53 100.02 0.76
1 2 100 429.47 321.72 0.76
1 2 300 3,006.5 2,309.9 0.77
1 2 500 7,574.0 5,835.8 0.77
1 2 1,000 26,904.0 20,799.0 0.77
1 3 4 4.6662 3.8090 0.82
1 3 5 5.2975 4.2941 0.81
] 3 6 6.0356 4.8572 0.80
1 3 7 6.8626 5.4855 0.80
1 3 8 7.7688 6.1722 0.79
1 3 9 8.7483 6.9133 0.79
1 3 10 9.7970 7.7061 0.79
1 3 20 23.678 18.194 0.77
1 3 50 96.894 73.776 0.76
1 3 100 309.75 236.28 0.76
1 3 300 2,127.6 1,633.2 0.77
1 3 500 5,328.6 4,102.3 0.77
1 3 1,000 18,810.0 14,531.0 0.77
1 4 5 5.4445 4.4297 0.81
1 4 6 6.0250 4.8788 0.81
1 4 7 6.6892 5.3889 0.81
1 4 8 7.4244 5.9506 0.80
1 4 9 8.2227 6.5587 0.80
1 4 10 9.0794 7.2099 0.79
1 4 20 20.391 15.777 0.77
1 4 50 79.199 60.416 0.76
1 4 100 248.18 189.35 0.76
1 4 300 1,675.7 1,285.7 0.77
1 4 500 4,175.7 3,212.9 0.77
1 4 1,000 14,662.0 11,321.0 0.77
1 5 6 6.2511 5.0734 0.81
1 5 7 6.8008 5.5010 0.81
1 5 8 7.4198 5.9787 0.81
1 5 9 8.0983 6.4997 0.80
1 5 10 8.8300 7.0595 0.80
1 5 20 18.528 14.427 0.78
1 5 50 68.430 52314 0.76
1 5 100 210.37 160.57 0.76
1 5 300 1,398.0 10722 0.77
1 5 500 3,467.8 2,666.9 0.77
1 5 1,000 12,119.0 9,352.9 0.77
1 6 7 7.0718 5.7287 0.81
1 6 8 7.6009 6.1419 0.81
1 6 9 8.1892 6.5978 0.81
1 6 10 8.8289 7.0910 0.80
1 6 20 17.396 13.622 0.78
1 6 50 61.196 46.893 0.77
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a) a; a; [o)s [n] {n)/]o).
1 6 100 184.67 141.03 0.76
1 6 300 1,208.9 926.83 0.77
1 6 500 2,986.1 2,295.6 0.77
1 6 1,000 10,391.0 8,015.9 0.77
1 7 8 7.9005 6.3907 0.81
1 7 9 8.4148 6.7935 0.81
1 7 10 8.9809 7.2337 0.81
1 7 20 16.693 13.136 0.79
i 7 50 56.021 43.030 0.77
1 7 100 166.02 126.88 0.76
1 7 300 1,071.2 821.07 0.77
1 7 500 2,635.6 2,025.5 0.77
1 7 1,000 9,134.8 7,044.6 0.77
1 8 9 8.7343 7.0568 0.81
1 8 10 9.2375 7.4520 0.81
1 8 20 16.266 12.855 0.79
1 8 50 52.157 40.159 0.77
1 8 100 151.85 116.13 0.76
1 8 300 966.19 740.43 0.77
1 8 500 2,368.4 1,819.5 0.77
1 8 1,000 8,178.3 6,304.8 0.77
1 9 10 9.5714 7.7258 0.81
1 9 20 16.030 12.714 0.79
1 9 50 49.182 37.959 0.77
1 9 100 140.70 107.70 0.77
1 9 300 883.23 676.75 0.77
1 9 500 2,157.4 1,657.0 0.77
1 9 1,000 7,423.6 5,721.3 0.77
1 10 20 '15.931 12.675 0.80
1 10 50 46.839 36.235 0.77
1 10 100 131.71 100.92 0.77
1 10 300 815.93 625.11 0.77
1 10 500 1,986.2 1,525.1 0.77
1 10 1,000 6,811.8 5,248.3 0.77
1 20 50 37.956 29.929 0.79
1 20 100 90.969 70.422 0.77
1 20 300 498.42 381.99 0.77
1 20 500 1,1717.7 903.15 0.77
1 20 1,000 3,928.4 3,020.6 0.77
1 50 100 73.084 57.942 0.79
1 50 300 290.78 224.55 0.77
1 50 500 637.83 490.03 0.77
1 50 1,000 1,996.9 1,532.4 0.77
1 100 300 225.95 177.13 0.78
1 100 500 444.09 344.09 0.77
1 100 1,000 1,270.5 976.50 0.77
1 300 500 363.47 289.19 0.80
1 300 1,000 768.19 600.59 0.78
1 500 1,000 716.53 567.67 0.79
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TABLE VII
Selected Values of the Intrinsic Viscosity and Intrinsic Conductivity for the Spherical
Dumbbell
p [o]. [n] [n)/lo].
1.0000 4.2072 3.4496 0.82
1.0201 . 4.2707 3.4980 0.82
1.1276 4.6180 3.6754 0.80
1.5431 6.0912 4.8914 0.80
3.7622 19.176 14.756 0.77
6.1323 43.856 33.308 0.76
10.0677 109.603 82.690 0.75
r, = 3ri/4 r 0.75

Simha [120b] previously indicated a quadratic dependence of [n] on r, in
the r,— o limit, but his widely cited value for the prefactor, 3, is not
correct. The origin of this discrepancy is not clear, but we note that
Simha [120b] ignored hydrodynamic interactions.

Schiffer and Szegd [46] previously summarized exact results for the
electric polarizability of two separated spheres without the connecting
wire. The generation of a large dipole in separated spheres, however,
requires the electrical connection and the calculation of [o],, in the case
where there is a connecting wire is given in Appendix D. A tabulation of
these new results for [o],, along with the dimensionless polanzablhty
components (normalized by the partlcle volume), is given in Table VII.
These results are shown graphically in Fig. 2.5. It is hard to imagine a
geometry more representative of a dipole. For large separations [o],, is
simply proportional to r2

[0)a~r3  rp—® (3.26)

so that we have the asymptotic result

[nl/[c].~0.75, r,—x (3.27)

P

It is interesting that the dumbbell accords with Eq. (3.23) even in the
extreme limit of infinite separation.

We also mention some results for the intrinsic conductivity of insulat-
ing dumbbells. From the results of Schiffer and Szegd [46] for the
effective mass M of touching spheres and Eq. (2.6) we have

a (L)=-9{3)/8 (touching spheres) (3.28)

and by finite element methods we calculate the other component
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TABLE VIII
Electric Polarizability Components for Dumbbell
7, a (L)/V, a (T)/V, [o).
1.005 2.70774 7.25347 4.22298
1.050 2.73443 7.62957 4.36615
1.100 2.76139 8.06009 4.52763
1.150 2.78562 8.50399 4.69174
1.200 2.80726 8.96133 4.85862
1.250 2.82651 9.43222 5.02841
1.300 2.84358 9.91671 5.20129
1.350 2.85869 10,4149 5.37743
1.400 2.87207 10.9268 5.55700
1.450 2.88393 11.4526 5.74015
1.500 2.89444 11.9923 5.92705
1.750 2.93207 14.9010 6.92172
2.000 2.95400 18.1651 8.02437
2.250 2.96749 21.7895 9.24149
2.500 2.97622 25.7778 10.5767
2.750 2.98209 30.1325 12.0322
3.000 2.98618 34.8556 13.6093
3.250 2.98912 39.9485 15.3089
3.500 2.99128 45.4122 17.1316
4.000 2.99415 57.4550 21.1478
4.500 2.99589 70.9883 25.6600
5.000 2.99700 86.0150 30.6697
5.500 2.99775 102.537 36.1774
6.000 2.99826 120.555 42.1838
6.500 2.99864 140.070 48.6892
7.000 2.99891 161.084 55.6938
7.500 2.99911 183.595 63.1977
8.000 2.99927 207.605 71.2011
8.500 2.99939 233.114 79.7041
9.000 2.99949 260.121 88.7067
9.500 2.99956 288.628 98.2091
10.000 2.99963 318.634 108.211
20.000 2.99995 1,233.70 413.231
30.000 2.99999 2,748.71 918.237
40.000 2.99999 4,863.72 1,623.24
50.000 3.00000 7,578.73 2,528.24
100.000 3.00000 30,153.7 10,053.2
150.000 3.00000 67,728.7 22,578.2
200.000 3.00000 120,304.0 40,103.2
250.000 3.00000 187,879.0 62,628.2
300.000 3.00000 270,454.0 90,153.2
350.000 3.00000 368,029.0 122,678.0
400.000 3.00000 480,604.0 160,203.0
450.000 3.00000 608,179.0 202,728.0
500.000 3.00000 750,754.0 250,253.0
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Figure 2.5. Longitudinal (L) and transverse (T) components of the dimensionless
(normalized by the particle volume) electric polarizability tensor «, for the spherical particle
dumbbell, along with the average of these components, the intrinsic conductivity {o]...

e, (T)=-41{(3)/30  (touching spheres) (3.29)

~ which has long defied exact analytical calculation [46]. [The closed form
estimate in Eq. (3.29) is based on the assumption that «_(7) is
proportional to £(3), as in Eq. (3.28), in combination with accurate
numerical estimates of a,_ (T).] We note that the known value of a (L) is
given by our finite element method to an accuracy of better than 1%, so
we expect that the corresponding value for the unknown a_(7") should be
correct within the same tolerance. (From previous experience, the finite
element method used here is always more accurate for conducting
matrix—insulating particle problems than for conducting matrix—-supercon-
ducting particle problems.) We then obtain the intrinsic conductivity of
the insulating doublet of spheres

[0], = —(463/360){(3) = —1.55 - - - (3.30)
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This value is only slightly different than the sphere result [o], = —2 of
Maxwell [4a] [see Eq. (2.1)]. At large distances between the spheres, the
dumbbell should approach the sphere value, so the spatial variation of
[c], has limited interest in comparison with the conducting dumbbell
case. We note that in the insulating case and long slender bodies,
a,(L)/V, tends to approach —1. This result can be derived from slender
body theory using results of Miles [120c] and the known relation between
a,(L) and o, (T). The corresponding value of a,,(T)/V, approaches -2,
so that [o], obeys the general relation

[c]l,=—3  (slender body) (3.31)

Even in this extreme limit the deviation of [¢], from the sphere value is
unimpressive. The variation of [¢], with shape is more interesting for flat
bodies (see Fig. 2.2). We return to a discussion of flat bodies in Section
VI

As a final point, we mention that exact calculation of [n] for other
shapes is possible, in principle. Exact results for e, and M are known for
the lens, bowl, spindle and other shapes [46]. Calculation of [n] involves
similar (albeit more complicated) mathematics.

IV. NUMERICAL INVESTIGATION OF [n]/[c],. RATIO (d=3)

Further examples of the approximate invariance of [n]/[o],, for a variety
of shapes are given in this section based on numerical finite element
computations in combination with partial analytic results for [] and [o]...
All of the results obtained are consistent with Eq. (3.23).

The analogy of the elastostatic and hydrodynamic problems of fluid
suspensions and solid composites [17, 102, 103}, mentioned in Section 111,
indicates that a modification of existing finite element programs for
calculating the. effective elastic properties of composite bodies can be
made to also obtain [n]. This modification and the variational principle
for obtaining the Stokes’ equation on which it is based, are described in
Appendix E for particles with orthorhombic symmetry or higher (triaxial
ellipsoids have orthorhombic symmetry). We note that Brenner’s work
[117] was essential in checking the consistency of this generalization,
especially in the case of anisotropic elastic stiffness and viscosity tensors.
We also utilize a similar finite element program for the calculation of
[]... This finite element method is also described in Appendix E. All
particles were represented by a cubical digital image, so that the elements
were cubes arrayed on a simple cubic lattice. A standard lattice of size
104° was used, which was the largest that would fit in the memory of the
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computer available to us and which would allow reasonable running
times. Even so, the total CPU time used to compute the results in this
chapter was about 2000 h on a CONVEX 3820 supercomputer.

In these numerical calculations, arbitrary shapes had to be represented
by collections of pixels. Because of the overall computational cell size
limit, a compromise had to be taken between using enough pixels to give
a good representation of the particle, and keeping the particle small
compared to the overall unit cell, so as to keep the volume fraction small
enough to be in the linear regime in concentration. The size and
complexity of the objects that could be treated in this fashion is
necessarily limited, but a good approximation to a wide range of
physically interesting objects could still be obtained.

Periodic boundaries were used in all simulations to reduce the
importance of finite size edge effects. Since a cubic cell was always used,
in reality all computations were really for simple cubic periodic arrays of
the object considered. Exact calculations exist for the intrinsic conductivi-
ty and viscosity of rigid spheres arranged on a simple cubic lattice. This
example can then be used to illustrate the effect of finite resolution, as
described above, and finite system size on the accuracy of the computa-
tions.

Zuzovsky and Brenner carried out computations for the effective
conductivity of cubic arrays of spheres embedded in a matrix [121a],
which are very useful for comparison with our numerical data. For the
particular case where the spheres were superconducting and the matrix
was an ordinary conductor of unit conductivity, they developed an
accurate formula' for the effective conductivity o of the composite
medium. Subtracting one from the effective conductivity, and dividing by
the sphere volume fraction ¢, gives their prediction for the effective
intrinsic conductivity at any sphere volume fraction

[O']m = 3[1 - ¢ - 1.3O6¢10/3/(1 . 0.407¢7/3)
002207+ 0(¢")] ™ (4.1)

where ¢ = m(d/L_)*/6, d = sphere diameter, and L = size of cubic unit
cell. Actually, this quantity is only equal to the true intrinsic conductivity
in the limit where ¢ is small enough so that the expansion in Eq. (2.2b) is
applicable. Equation (4.1), however, provides a useful way to represent
our numerical conductivity data.

Nunan and Keller [121b] computed the components of the viscosity
tensor of the simple cubic array of rigid spheres in a fluid. There are two
independent components for this symmetry (there would be three



120 J. F. DOUGLAS AND E. J. GARBOCZI

independent elastic components, but incompressibility reduces these to
two), defined by Nunan and Keller as two functions of ¢, p and g. With
the use of their exact numerical results, they were able to show that an
analytic expansion given by Zuzovsky et al. [121c] was accurate to within
0.2% up to ¢ = 0.13 (d/L_ = 0.63) for simple cubic sphere packings. This
analytic expression equals '

p=2.5¢[1-(1-60b)¢ +12a¢°" + o)™} (4.2a)
g =2.5¢[1—(1+40b)p — 8ad>" + o™ (4.2b)

where a = 0.2857 and b = —0.04655. In terms of p and g, the rotationally
averaged intrinsic viscosity [7] = (n/m, — 1)/¢ at any volume fraction ¢ is
given by

[7]=(2p +39)/5 - (43)

Figure 2.6 shows the finite element results for periodic arrays of spheres,
along with the exact results, Egs. (4.1) and (4.3). First, consider the
results for the intrinsic viscosity (circles). At small values of d/L,, the
numerical results are well above the exact result. This result is due to not
having enough pixels to represent the spherical shape. For example, a
sphere with a diameter of five pixels (a pixel is considered to be part of
the sphere if its center lies within a radius of the center) does not look
much like a smooth continuum sphere. In fact, all the finite element
results shown in Fig. 2.6 have been rotationally averaged, as they have
cubic symmetry. As d/L, increases, allowing each sphere to be repre-
sented by more pixels, resolution improves, and the numerical points
approach the exact curve. There is a region, around d/L_ = 0.4, where
the numerical results are essentially exact, but the value of [n] has not
changed much from the d/L,—0" limit. This is the region in which we
have tried to run all the simulations: d/L_ high enough to give good
particle shape resolution, but not high enough so that ¢ is out of the
linear regime. Obviously, for higher aspect ratio particles, it is harder to
stay in this range of d/L..

Now consider the results for [o]., shown in Fig. 2.6. The comparison
between exact formula and numerical (finite element) results is similar,
except that the numerical results are consistently about 5-8% above the
exact curve. This error is possibly larger for larger aspect ratio particles.

Judging by the results for spheres shown in Fig. 2.6, we can expect that
both the numerically computed intrinsic conductivity and viscosity will be
systemically high, with the ratio [n]/[o].. probably somewhat low, as the
intrinsic conductivity seems to overshoot the true result slightly more than
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Simple cubic array of spheres
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d/L,

Figure 2.6. Numerical and analytical results for the intrinsic conductivity [o]. and
intrinsic viscosity [n] for simple cubic arrays of spheres (superconducting and rigid) as a
function of d/L_, the ratio of the sphere diameter d to the sphere center spacing L_. The
length L is also defined as the size of the computational cell.

the intrinsic viscosity. Slightly increasing all the ratios involving a
numerical computation of [o], in Tables IX-XI would improve the
agreement with Eq. (3.16).

We have run other tests on the intrinsic viscosity using nonspherical
shapes. Having exact results for nontrivial shapes is crucial in order to
check the accuracy of numerical simulations. We computed [n] for a
spherical dumbbell with r, = 1.526, giving [n] ~4.9, as compared to the
exact value [n]=4.89 (r, =1.543). An ellipsoid of revolution with an
aspect ratio of 3 gave [n]=3.91, which is 6.1% higher than the exact
value of 3.685. The numerical result for two touching spheres was 3.62,
about 5% larger than the exact result of [n] =3.45 given in Eq. (3.13).

The important physical example of a right circular cylinder is consid-
ered next. Very precise analytical calculations of the polarizability e, have



122 J. F. DOUGLAS AND E. J. GARBOCZI

TABLE IX
Intrinsic Viscosity and Intrinsic Conductivity for Cylinders
Dimensions Exact Numerical Numerical Numerical Numerical
U -] o- o«
[] [] ] Exact Numerical
ml/lo].. /[o].
1x1 4.106 432 3.45 0.84 0.80
1x1 3.401 3.56 2.90 0.85 0.81
1x2 3.622 3.79 3.08 0.85 0.81
1x4 4.704 4.93 3.93 0.84 0.80
TABLE X

Intrinsic Viscosity and Intrinsic Conductivity for Rectangular Parallelipipeds with Two
Equal Edges :

Aspect Prolate Oblate
Ratio
(x, 1/x) [o]. [n] [n)/[o]. [o]. [7] /o).
1 3.72 3.05 0.82 3.72 3.05 0.82
2 4.22 3.41 0.81 4.15 3.36 0.81
3 5.21 413 0.79 4.84 3.88 0.80
4 6.38 498  0.78 5.58 4.44 0.80
5 7.72 596 077 6.34 502 079
10

16.4 12.3 0.75 10.2 7.92 0.78
. 1.11a%¢ 0.854> 0.77

0

* Number density units.

TABLE XI
Intrinsic Viscosity and Intrinsic Conductivity for Various Shapes in Three Dimensions

Shape m [o]- [n] )/[o].
Sponge 15727 8.74 7.16 0.82
Sponge 21/27 27.1 2.0 0.81
Sponge 23127 55.0 44.7 0.81
Sponge 25/27 192 156 0.81
Sponge 33/35 3 255 0.82 i
Dice (r, = 2.0) 7.44 5.84 0.78
Jack 4.50 3.68 0.82
Square Ring 23/25 127 98.7 0.77

Square hollow tube 5/6 16.7 13.3 0.80
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been made for the cylinder [122a and b]. Values of [o],, calculated from
these results are given in Table IX. Finite element calculations of [n] and
[o]. for several aspect ratios, which have comparable accuracy to the
sphere and touching sphere test cases, are also given in Table IX. The
ratio [n]/[c].. obtained from this combination of numerical and analytical
calculations accords rather well with Eq. (3.16) and the general correla-
tion Eq. (3.23). Note the difference between the columns marked
Numerical/Exact and Numerical/Numerical giving the results for the
ratio []/[o].. (The term numerical refers to an estimate obtained by
finite element calculation while exact refers to analytic results. The exact
results often involve a nontrivial numerical evaluation of the integral
expressions that define the analytic results, however.) Using the finite
element estimates for the intrinsic conductivity instead of the exact results
gave a value somewhat closer to the prediction of Eq. (3.16), since
similar systematic computational errors for [n] and [o], probably com-
pensate.

Next, we examine the case of rectangular parallelepipeds which is
summarized in Table X. Simulation results closely parallel the exact
analytical calculations for the ellipsoid of revolution case discussed in
Section III. Again the ratio [p]/[o]. is shown to be nearly invariant with
respect to shape. The oblate result for a very large aspect ratio (marked
in Table X) corresponds to the case of a square plate and such objects are
discussed more fully in Section VI. The value for [o], is approximately
7% higher than the best known experimental value (see Section VI) and
we expect that our estimate of [n] is too large by about the same amount.
The [n]/[o].. ratio tends to decrease as the aspect ratio increases. These
results paralle] the analytic results for ellipsoids of revolution in the
prolate and oblate limits.

Next, we illustrate a simple means to increase [n] and [c], to large
values without making a very extended or flat object. We consider a cube
of unit edge length, in which a square channel is cut through the center of
each face, which passes completely through the cube. A picture of one
such object is shown in Fig. 2.7a. The parameter m is taken to be the
edge length of the cutout face in units of the cube edge length. We obtain
a rigid cubic wire frame when m approaches 1. Notice that cutting out the
center, which makes the particle more spongelike, has a very large effect
on [n] and [o].., as seen in Table XI. It would be interesting to push the
effect to the extreme in a different way by generating a Menger sponge
[123] fractal by a repeated decimation of the cube at different scales so
that [y] and [o]. would diverge in a characteristic fashion related to the
fractal dimension of the sponge. The memory capacity of the computer
was not large enough to allow us to consider more than one or two
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generations of such an iteratively constructed diffuse object, so we
presently confine ourselves to the first generation wire frame structure
shown in Fig. 2.7a. The rapid increase of [n] and [o], when large holes
are cut out is noted. In the limit where m goes to one the intrinsic
conductivity and viscosity appear to scale roughly quadratically in
(1-m). . _

In a similar vein we also consider a flat square “ring” where the length
of each side is 25 and m = 23/25. The effect on the virials is large, as in
the “sponge” case (see Table XI). Results for a square cross-section tube
of width one third of the side length are given in Table XI where m of the
square face equals 5/6. In this case a less pronounced effect is found.

We consider other strategies of particle modification in Table XI. For
example, instead of decimating the structure we introduce protuberances
onto our object. Specifically, we poke three rectangular parallelipipeds
orthogonally through a sphere (see Fig. 2.7b) to create a *‘jack-like”

Figure 2.7. Model irregularly shaped objects considered by finite element computa-
tions. (a) sponge (m = 0.6), (b) jack-like object, and (c) dice.
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Figure 2.7. (Continued)
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structure. Taking the width of these parallelipipeds as a unit of length, we
take their length as 15 units and the sphere diameter as 9. The increase of
[n] and [o].. is not as dramatic as the “sponge” case, but the effect is still
appreciable. We next consider the case of separated and aligned cubes
(dice), connected by a rigid, conducting wire of vanishing thickness to
maintain object connectivity (see Fig. 2.7c). The results in Table XI show
that such a tethering of bulky groups has a very large effect on the values
of [n] and [¢],.. The values of [] for dice are similar to [n] values for the
spherical particle dumbbell (see Table VII) at comparable separations r,,.

V. INTRINSIC VISCOSITY AND CONDUCTIVITY INd=2

Calculation of the virial coefficients [n], [o]., [¢],, and (M) for a circle
reveals a remarkable degeneracy in d =2

1] =l[o].=—[o),=(M)/A=2 (5.1a)

where A is the circle area. We also have corresponding elastostatic results
for hard and soft circular inclusions, [G(hard)]= —[G(soft)]=2. The
equality [o]. = —[g], in Eq. (5.1a) follows from the Keller-Mendelson
inversion theorem [78]. Note that this relation holds for regions of
arbitrary shape. The intrinsic viscosity result in Eq. (5.1a) is due to Brady
[113] who found [n] = (d + 2)/2 for hyperspheres. It is easy to show that
[c], and [o].. for hyperspheres equal

[0),=-d/d-1), [o].=d, d=2 (5.1b)

so that the equality in d = 2 is evidently a rather special occurrence. This
can be seen in Fig. 2.8, where —[o], and [o]. are plotted versus
dimensionality d. The relation (M)/A = —[c], follows from the Keller—
Kelvin relation [Eq. (2.6)], which is not restricted to d =2 and holds for
regions of arbitrary shape. We note that [p]=2 actually has been
measured in a quasi-two-dimensional film [124].

For objects of noncircular shape the degeneracy of these shape
functionals reveals itself in the general relations

[o]. = —[olo=(M)/A (52)
and, moreover, Eq. (3.11) implies the approximation

lo).=[n] (5.3a)
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Figure 2.8. Intrinsic conductivities, [o], and [o]., of a d-dimensional hypersphere
versus dimensionality d.

In Appendix F we show that Eq. (5.3a) is exact for ellipses. The de-
pendence of [o], and [n] on aspect ratio x = (semi-majoraxis)/(semi-
minor axis) is given by

[o]. =[] = (1 +x)*/(2x) (5-3b)

It seems entirely possible that the chain of particle property equalities in
Eq. (5.1) could be exact for objects having arbitrary shape in d=2. In
this section we further examine the conjecture [Eq. (5.3a)] numencally
for other shapes. General agreement is found, within numerical error, in
accord with our conjecture. We also provide many new, exact results for
[¢],, [0]).., and {M)/A that derive from the recognition of the chain of
equalities [Eq. (5.2)] discussed above.

Pélya [28] proved rigorously that (M)/A is minimized for circular
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regions of all regions having finite area. Recognition of Eq. (5.2) then
implies the physical result

[0le=—[c)y=(M)/IA=2 (5.4)

with equality obtained uniquely for the circular region. Pdlya, in fact,
proved much more in the process of deriving this fundamental isoperi-
metric inequality. He showed that (M)/A is given exactly by

(MYIA=2A_A, A ,==C; (5.5)

for regions having arbitrary shape, where C, is variously termed the
“transfinite diameter”, “outer radius”, or “logarithmic capacity”, and A
is defined here as the conformal area. (The area A and perimeter P of
regions having general shape [30b] satisfy the important isoperimetric
inequalities A< A_, P=2#C,, and we note that P=2#C, is often a
reasonable approximation for objects having a modest shape irregularity
[26]).)

The transfinite diameter C, is a basic measure of the average size of a
bounded plane set, and can be defined in a variety of equivalent ways
[29,30]. The parameter C,, for example, is defined as the conformally
invariant magnitude of Dirichlet’s integral associated with the exterior of
the region defining the particle [29]. The equivalent transfinite diameter
can be expressed in terms of the Euclidean metric defining the distance
between points in the set [30]. Perhaps the most useful definition of C,
involves the purely geometrical construction of mapping the exterior of a
region ) having an arbitrary but simply connected shape and finite area
onto a circular region in such a fashion that the points at a large distance
from € are asymptotically unaffected by the transformation [28]. The
radius of this uniquely defined transformed circular region equals C;.
This transformation is basically the content of the Riemann mapping
theorem [30c]. The origin of the outer radius terminology is thus
apparent.

The invariance of C; under conformal transformations is very conveni-
ent in the numerical computation of C; and thus [o], and the other shape
functionals of physical interest. It would be useful to have a program to
calculate C, for any conceivable bounded (compact) plane set, so that the
physical consequences of shape variations could be explained easily. In
Fig. 2.9 we indicate the results [125,126] obtained using ‘“‘state of the art”
conformal transformation methodology. The intrinsic conductivities of
regions a) and b) in Fig. 2.9 were calculated using the energy integral
definition of logarithmic capacity (see [29]) for certain spiral shaped lines

......
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(ol = 2.697 (o) = 2.417
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(6] = 3.699 [0)e = 2.523
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Figure 2.9. Various closed regions and numerical conformal mapping calculations for
[¢]. corresponding to these regions. Numerical calculations were performed for us by
McFadden [126].

that were then mapped conformally onto the indicated regions. By virtue
of the invariance of C, under comformal transformation, the C, values
for the original linear curves (not shown) equals C, for the indicated
regions in Fig. 2.9 and accurate estimates of C, are obtained in this
fashion. Any smooth nonintersecting curve in the plane can be mapped to
its corresponding closed region in this fashion so that a large class of C,
calculations becomes possible for rather intricately shaped regions. Note
the large value of [o], in Fig. 2.9c that results from the screening of the
interior of the region in much the same fashion as the sponge shaped
objects discused in the previous section. In c and d of Fig. 2.9 an
alternative method of calculating C, by conformally mapping the indi-
cated regions onto a circular region of radius C, numerically [126] is
illustrated. This method is powerful, provided the region does not have
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sharp corners. (Other methods exist for polygonally shaped boundaries
that are amenable to full analytic treatment and some of these results are
discussed below.) We conclude that although many regions can be treated
by these conformal techniques, there is still no simple and general
method that can be adapted to calculate C, for arbitrarily shaped regions.
This remains an important mathematical challenge.

We mention that McKean [80c] summarized a formal algorithm for
calculating C, that has the generality we seek. This method involves
hitting the 2D domains with random walks. This approach is similar to
the technique implemented recently [80a and b} to calculate the Newto-
nian capacity [see Eq. (3.10)] in d = 3. Implementation of this algorithm
should allow the numerical calculation of C, for any bounded plane set.

Since C, is a central object in the harmonic analysis of two dimensions
[26, 28-30], there exist extensive tabulations of C, [26, 29]. We may
combine this information with Eq. (5.5) to obtain numerous exact results
for the intrinsic conductivity. Table XII gives a sampling of some of these
results. Further tabulation of expressions for C; are given by Pdlya and
Szegd [26] and Landkof [29].

Pélya’s isoperimetric inequality, [o],, =2 [see Eq. (5.4)], is illustrated
nicely by the case of the symmetric n-gon. Table XIII shows results for
[].. as a function of n. The circle result is recovered in the limit 7 —> .

TABLE XII
Logarithmic Capacity C, Formulas for Variously Shaped Regions in Two Dimensions.

Region type . Logarithmic Capacity Intrinsic Conductivity
Co [o]-
1. Circle of radius a a 2
2. Ellipse, (@a+b)/2 (@ +b)*/2ab
Axesof lengtha and b
r z(%)a
3. Square of side length a T = 0.59017a 2.1884
4. Triangles: n
(a) Equilateral triangle, I ERY)
Height " 2— =~ 0.4870h 2.5809
v
(b) ﬁght triangle, (5°"1°r*(3)/10°7%)h = 0.37791k 3.1090
ng side of length A
(c) Isosceles right triangle, 3¥r%(1)a
Long side of length & T(z——);—,—z— =0.47563h 2.8431
T
5. Hexagon of side length a [3r°(1)/28 22 =0.920324 2.0486
6. Symmetric n-gon, (pF(1 + 1/n)12" "Vl + Un)la  [tan(w/n)/2an]T*(1/n)/T*(2/n)
Side length a

7. Semicircle of radius a (4/3*%)a (4)*=2.3704
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TABLE XIII
Intrinsic Conductivity for Regular n-gons in Two Dimensions

Shape n [o]).
Triangle 3 2.5811---
Square 4 2.1884---
Pentagon 5 2.0878---
Hexagon 6 2.0486- - -
Octagon 8 2.0197---
Circle © 2

This beautiful result and others in Table XIII were recently rediscovered
by Thorpe [127]. The domain fuctional [o],, for n-gons tends to increase
as the symmetry of the n-gon [26] is reduced by shape deformation. For
example, the intrinsic conductivity of the equilateral triangle and the
square are minimal for all triangles and quadrilaterals, respectively
[26,128]. A systematic investigation of the variation of [o],, with symme-
try would be interesting, since ample evidence indicates that [o], is
smaller for regions of higher symmetry.

Results for C, and [o],, are also given for linelike regions in Table
XII. Such resuls are special to d =2 since it is well known that the
Newtonian capacity C [see Eq. (3.10)] vanishes for any finite length
differentiable curve [129] in d = 3. Thus, we can expect [o].. and [n], as
well as the friction coefficient of any smooth curve in d = 3, to equal zero.
The finiteness for the capacity of Brownian paths [130] in three dimen-
sions owes itself to the fact that such curves are typically nondifferenti-
able and this property of Brownian paths has numerous implications for
polymer physics and phase transition theory.

We next turn to a test of the prediction Eq. (3.11), relating [n] and
[].. for nonelliptical shaped regions. Finite element calculations of [n]
for objects of various shapes are indicated in Table XIV. Our numerical
estimate for a circle is [9] = 1.96, which is 2% lower than the exact value.
Checks against the exact result [Eq. (5.3a)] for ellipses show that the
finite element computations of [n] in d =2 tend to be slightly lower than
the exact values, in contrast to the numerical calculations in d = 3, which
tend to be slighly higher than the exact values. For example, the result for
[n] for an ellipse of aspect ratio 101/21 =4.81 is 3.33, 5.1% lower than
predicted by Eq. (5.3b).

Exact calculations of M for many interesting shapes are available in the
hydrodynamic literature because of important aerodynamic and ship
dynamics applications [63, 69-71] and we include the corresponding exact
[c]. and numerical [n] results for a parabolic lens, spherical lens,
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TABLE XIV
Intrinsic Viscosity and Intrinsic Conductivity for Various Shapes in Two Dimensions
Shape Aspect [o]. [n] nl/[e].
Ratio :
Rectangle 1 2.19 2.15 0.98
2 2.40 2.33 0.97
3 2.76 2.65 0.96
4 3.15 3.01 0.96
5 3.55 3.37 0.95
8 4.76 4.51 0.95
12 6.38 6.03 0.95
14 7.18 . 6.78 0.94
16 7.99 7.52 0.94
18 8.79 8.25 0.94
19 9.20 8.64 0.94
20 9.60 8.94 0.93
Parabolic lens 2.287 221 0.97
Spherical lens 3.236 3.19 0.99
Two touching ”
circles r,=1 7’14 2.38 0.96

touching circles, and a rectangle of varying aspect ratio x in Table XIV.
Thorpe [127] gives a recent discussion of [o], for the rectangle. We also
mention calculations of (M)/A and thus [o], for the exotic starlike
hypocycloid and teardrop-like shapes calculated by Wrinch [70], which
are difficult to approximate by finite element methods and even the
numerical cohformal mapping methods. These examples provide a good
challenge for any numerical method for calculating C, .

Looking more closely at the results for the [n]/[o].. ratio for rectangles
in Table XIV, we see that for the square this ratio is about 2% less than 1.
The error in [n] for the square should be comparable to that for the circle
and so the actual value of this ratio could easily be one—allowing for a
2% error on the low side for the intrinsic viscosity as in the circle case.
Consider now the rectangle with an aspect ratio of 5. If the error in the
intrinsic viscosity is similar to that of the ellipse with an aspect ratio of 5,
then this value should be about 5% lower, which would make the true
value of the ratio 1. Higher resolution should improve the computation, if
indeed the deviation from Eq. (5.3a) is only due to finite resolution error.
To test this, we recomputed the intrinsic viscosity for a rectangle of aspect
ratio 5 using approximately double the resolution (consuming 45 h of
supercomputer time). The ratio in Table XIV changed from 0.95 to 0.97,
as expected. Also, the error in the intrinsic viscosity is expected to
gradually increase with the aspect ratio at a given resolution, as described
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above for the d = 3 case. Considering this finite resolution error, the ratio
of the intrinsic conductivity and viscosity for rectangles is consistent with
Eq. (5.3a) being exact. Results for the other shapes listed in Table XIV
are also consistent with this error analysis and Eq. (5.3a). We also recall
that Eq. (5.3a) is exact in the case of an ellipse [see Eq. (5.3b)], so on the
basis of this analytical and numerical evidence we conjecture that [n] =
[g]. in d=2.

VI. INTRINSIC VISCOSITY AND THE POLARIZABILITY OF
PLATES

Plates occupy an intermediate position between objects extended three
dimensionally and objects in three dimensions that can be confined to a
plane. The loss of the extension of the body in the dimension normal to
the object plane has the effect of decreasing the number of nonzero
tensor components for &, and a,. We noticed in Section II that the
tensor components for nearly flat tend to exhibit rapid variation when the
thickness is varied. This makes such object shapes useful for effectively
modifying the properties of a medium.

The polarization tensors of plates are crucial in the description of long
wavelength scattering of electromagnetic and pressure waves through
apertures [88-91]. This connection was apparently first noticed by
Rayleigh [81a], but the practical significance of this connection was
appreciated more recently because of the difficulty of calculations of the
polarization tensor components for plates having general shapes. The
magnetic polarizability a,, (or the mathematical equivalent M) is also
important in the description of the flow of viscous fluid through screens
[131]. The technological literature is a good source of results regarding
the polarizability of plate-like regions.

The theoretical impetus for calculating the polarizability tensors of
plates came from the needs of a developing microwave technology
[47-50]. Bethe [88a] calculated the magnetic and electric polarizability of
circular plates in his classical theory of the diffraction of electromagnetic
radiation by a hole small compared with the incident wavelength and later
[89b] he gave results for elliptic plates. Cohn [49, 132] made electrolytic-
tank measurements of the polarizability components of plates of numer-
ous shapes (rectangular slots, rounded slots, rosettes, dumbbells, crossed
slots, etc.) to provide this important technological information. The
electric polarizability of an aperture of general shape was measured by
simply cutting out a nonconducting material of the given shape and
suspending the object with thin nonconducting wires in an electrolytic
solution between two electrodes coplanar with the inclusion. Similarly,



134 J. F. DOUGLAS AND E. J. GARBOCZI

the magnetic polarization was measured by suspending a metallic inclu-
sion normal to the electrode surfaces [132]. These experimental measure-
ments of the electric and magnetic polarizability of plates have had many
important applications.

Recently, numerical solutions of integral equations defining the electric
and magnetic polarizability tensors have been obtained for a wide variety
of shapes [72, 73]. These calculations have confirmed the accuracy of
Cohn’s measurements and a general correlation of the magnetic and
electrical aperture polarizations have been obtained for certain families of
objects [72, 73]. Significant progress has recently been made by Fabrikant
[75] who developed an analytical technique for calculating the magnetic
and electric polarizability tensors of plates that compares very well with
previous numerical and experimental results. Fabrikant treats polygons,
rectangles, the rhombus, a circular sector, and other shapes, and the
method can apparently be applied to regions having very general shapes.

The utilization of these important theoretical developments requires
the recognition of the relation between aperture polarizabilities o (apert.)
and o, (apert.), used in the technical literature, and the ordinary
polarizabilities, «, and «_,, discussed above. Babinet’s principle [73,89]
implies that these quantities are related by the definitions

o, (apert.) = -« /4, a,(apert.) =a, /4 (6.1)

Simple physical considerations show that a, for a flat plate is effectively a
scalar, having only one nonzero component. Correspondingly, the com-
ponent of e, for a metal plate normal to an applied field vanishes, since
there is no way to separate charges in this case. However, there are
nonvanishing components to a, when the plate is aligned along the field
direction. From these observations we immediately obtain numerous
results for a, and a,, from the literature of electromagnetic and sound
scattering through apertures.

For example, we can obtain the magnetic polarizability of an elliptic
plate from Bethe’s formula for the electric aperture polarizability of an
ellipse (plate is normal to field direction)

a,_(T) = (4wab’/3)/E(e) (6.2)

where a and b are semimajor and semiminor axes, e is the eccentricity,
e =[1-(b/a)*)"'?, and E is a complete elliptic function of the second
kind (T and L denote the transverse and longitudinal components of the
polarizability tensor as defined in Sect. 3). The average {a_) of a plate
generally equals
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(en) =3a,(T) (6.3)

since there is only one nonzero component, as mentioned above. Note
that Eqgs. (6.2) and (6.3) reduce to Eq. (3.17) for the circular disk.
Numerous other examples follow along these lines from recent numerical
calculations (72, 73] and analytical calculations by Fabrikant [75].

Results for the electric polarizability can be similarly obtained,
although these results tend to have a more complicated mathematical
description. We mention the important experimental estimate [49] of
a (L) for a square plate having a side length a,

a (L) =1.02a> (expt.) (6.4)

placed parallel to the applied field. There are two components of the
electric polarizability for an asymmetric rectangular plate, of course. The
estimate Eq. (6.4) was obtained from Cohn’s electrolytic tank measure-
ments and this value has been confirmed by more recent numerical [72,
73] and analytical studies [75] to an accuracy on the order of 1%. Our
finite element technique gives a,(L) =1.09a” for the square plate, which
is apparently too high by the usual 5-6% in d = 3. This result is listed in
Table X. .

These quantitative estimates of a, and @, for plates from this variety
of sources is very useful in combination with the approximate invariant
relation [Eq. (3.16)]. In Section III we mentioned the exact result

[7]=3lo]. (6.5)

for circular plates. Combination of the extensive plate estimates with Eq.
(6.5) then yields predictions for [n] that can be checked against experi-
ment. Further efforts are needed on the difficult problem of analytically
calculating [n] for arbitrarily shaped plate-like regions, which certainly is
not going to be any more tractable than the electrostatic and magneto-
static analogs. We note that our finite element technique could be used to
estimate the polarizabilities, intrinsic conductivity, and intrinsic viscosity
of arbitrarily shaped objects, and that the method is not limited to large
values of the relative conductivity A,. The numerical calculations are
actually faster and more accurate when A, is not large.

VII. CONCLUSIONS AND SUMMARY

There are many physical processes for which the solution of the Laplace
equation on the exterior of a body of general shape is central to the
theoretical description. Previous papers [80] discussed the exterior Dirich-
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let problem for the Laplace equation and the calculation of the capacity
C, which is the shape functional associated with this problem. This
chapter discusses other functionals of shape associated with the solution
of the Laplace and the Navier-Stokes equations on the exterior of objects
having general shape. These functionals [26] include the electric and
magnetic polarizabilities, the hydrodynamic virtual mass, and the intrinsic
viscosity.

New numerical and analytical results for these shape functionals, along
with values from a large literature, were obtained to check a proposed
relation between shape functionals associated with the Laplace equation,
namely, the electric polarizability and a shape functional associated with
the Navier-Stokes equation, the intrinsic viscosity. Our new approximate
relation is a natural generalization of a result of Hubbard and Douglas
[27] approximately relating the translational friction coefficient (Navier—
Stokes equation) to the electrostatic capacity (Laplace equation). These
relations between hydrodynamic theory and electromagnetic theory
complement the classical relation between the effective mass M of perfect
fluids and the magnetic polarizability &, observed by Keller et al. and
Kelvin [57,58].

Exact and numerical results confirm that the intrinsic viscosity [n] is
proportional to the intrinsic conductivity [o],, of conducting particles of
arbitrary shape to within about a 5% approximation,

[7]= (0.79 = 0.04)[or).. (7.1a)

in three dimensions. In two dimensions we find [n] exactly equals [o],, for
ellipses. Data for other shapes, allowing for a usual underestimation of
[n] by 2-5% in our d = 2 finite element method, are in general agreement
with this conjectured approximation. On the basis of this evidence, we
conjecture that [n] = [o]., for all shapes in d =2. Further exact calcua-
tions of [n] for some of the shapes discussed would be useful in
developing a proof (or disproof) of this conjecture. All of our findings
agree well with the predictions of our angular averaging approximation

[l =[@@ +2)/(2d)][c]. (7.2a)
[7]=0.83[c]., d=3 (7.2b)
l=[o]., d=2 (7.2¢)

Although our primary goal in this chapter was to test relation (7.2), the
tabulated values of [¢].., [o],» and [n] for numerous shapes and the
discussion of the general shape parameters that affect these quantities
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should find wide application. Inevitably, this information becomes im-
portant when we attempt to resume the virial expansions, such as Eq.
(2.1), to provide a useful description of suspensions of arbitrarily shaped
particles in a matrix at high concentrations.

APPENDIX A
VIRTUAL MASS AND THE ACOUSTIC INDEX OF REFRACTION

It seems likely that the fundamental relation [Eq. (2.6)] was recognized
much earlier since the mathematical equivalence between the flow of
inviscid fluids and electrical conduction is well known [58,64,102].
Recently, Brown [133a] pointed out a nonperturbative generalization of
Eq. (2.6). He showed that the conductivity o of a nonconducting rigid
matrix filled with a conducting fluid of conductivity g, is related to the
change in the average effective mass (effective fluid density) of the
corresponding inviscid fluid at arbitrary volume fractions. Johnson and
Sen [134] showed that this analogy also implies that the acoustic index of
refraction »n of an ideal fluid in a rigid matrix equals

n’=(1-¢)o,/o) (A.1)

where 1— ¢ is the porosity. This relation, like so many others, was
apparently known to Rayleigh [135]. Acoustic index of refraction mea-
surements (fourth sound) for superfluid He* in a porous medium [136]
and salt water in a sintered glass bead pack [24d] confirm Eq. (A.1) to a
good approximation. Recently, there has been a nonperturbative
generalization of Eq. (2.2a) [137]

oloy=(1—¢)/tg (A.2)

where the electrical tortuosity ag is defined as t; = D,/D,, where D, is
the diffusion coefficient of particles in the fluid region such that the
diffusing particles obey a reflecting boundary condition when they
encounter the matrix. The parameter D, is the diffusion coefficient of the
particle in the fluid in the absence of the rigid matrix.

The diffusion coefficient observed in a macroscopic diffusion measure-
ment on a porous medium with insulating rigid inclusions, however, is not
equal to the pore diffusion coefficient, D,. Rather, the diffusion coeffi-
cient D measured in a macroscopic measurement is related to D, as

D=D,/(1-¢) (A3)

so that Eq. (A.2) reduces to the generalized Einstein relation [138].
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oloy=DID, (A.4)

For low concentrations (¢ — 0") the nonperturbative relation [Eq. (A.4)]
reduces to the known virial expansion [16a, 16d] for fixed hard sphere
inclusions having a reflecting boundary condition

oloy=DI/Dy=1+[o],+O(¢?), [o]o=—(M)/V, (A.5a)
(M)IV,=3  (d=3; sphere) (A.5b)

From a conductivity standpoint Eq. (A.5a) corresponds to insulating
inclusions. Equation (A.5a) shows that the ayerage effective mass (M) of
the rigid inclusions determines the leading concentration dependence of
the diffusion coefficient in a porous medium in the absence of particle -
interaction. We note that the insensitivity of [o], to particle shape for
extended particles (not platelets) means that as particles aggregate at
higher concentration then Eq. (A.5) should remain a good approxi-
mation. Experiment, indeed, shows that the leading linear concentration
dependence in Eq. (A.5) holds to a good approximation over a wide
concentration range [33, 34].

APPENDIX B
POLARIZATION FORMALISM FOR ELLIPSOIDS

Stratton [52a] defines a set of numbers A;, which often arise in the
discussion of the properties of ellipsoids. These numbers are defined by
the integrals (Stratton does not include prefactor a,a,a;):

A= aa,a, [ drl(e? + DRG] ®B.1)

where
R(x) = [(a] + x)(@; + x)(@} + »)]'"* (B.2)

and the constants a,, a,, and a; are the ellipsoid semiaxes lengths with
V, =4ma,a,a;/3. The A; parameters obey the simple sum rule,

A +A,+A,=2 ~ (B3)

Equation (B.3) is useful since it reduces the integrals that need to be
computed for a general ellipsoid from three to two. Various combinations
and ratios of these numbers are required for the intrinsic viscosity
calculation and are given in Appendix C. Note that Stratton uses the
notation A; for these quantities, while Haber and Brenner [14] and
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Scheraga [120a] use ;. We followed Stratton’s notation to avoid confu-
sion with our notation for the polarizability.

The A; integrals can be expressed as combinations of the standard
elliptic integrals. However, for numerical purposes, it is just as simple to
evaluate the integrals directly using Gauss-Legendre quadrature. It is
first useful to transform the integrals by letting x =tan’(9), so that
0<6 <7/2. An integration mesh can be easily set up and enough points
chosen to achieve convergence. For the smaller values of the ratios asla,
and a,/a, (on the order of 50 or less) we needed less than 100 points in
the quadrature mesh to achieve 5-6 significant figure accuracy, while for
the highest values of these ratios studied (on the order 10,00) we needed
10000 points in the integration mesh to achieve the same accuracy.

For ellipsoids of revolution we have a, =a, so that asla, =a,la, =x,
the aspect ratio and the number of integrals needed reduces to 1. In this
case we have A; = A4, =(2— A;)/2 and A, is given by '

Ay =[x/(x* - 1)][B - 2/x] (B.4)
where for prolate ellipsoids of revolution x>1)
B=[("~1D]""In {{x + («* + 1)"?/[x — * + 1)/} (B.5)
and for oblate ellipsoids of revolution (x < 1)
B=2cos™! (x)/(x*—1)""? (B.6)
With the A, functions defined for any ellipsoid the formulas in Stratton
can be easily evaluated to compute the polarizability for any choice of
matrix conductivity o, and particle conductivity o,. For the case of a

highly conducting ellipsoidal inclusion, o, > 0,, the components of «, are
defined as

a,(i)/V, =2/A, (B.7)

In the case of an insulating ellipsoidal inclusion the components of «_, are
given by

a,(@)/V,=(A4;/2-1)"" (B.8)
and the intrinsic conductivity equals

[o]=(a; + a, + a;)/3 (B.9)
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APPENDIX C
INTRINSIC VISCOSITY FORMALISM FOR
ELLIPSOIDS AND OTHER SHAPES

Haber and Brenner worked out the isotropically averaged intrinsic
viscosity for ellipsoidal particles [14]. This formalism is valid for any
choice of the axis lengths a,, a,, and a,. Values of the A, functions are
required, as well as auxiliary functions that can be defined in terms of the
A,;, denoted A and A"]. They are given as follows (i, j, k are permuted
cyclically):

Aj=aa,(A,—A)(@;—a) (C.1)
A= (alA;—aiA,)/ (@ —a}) (C.2)

[The expression for A is opposite in sign from that given in Haber and
Brenner [14], and this typographical error is corrected in Eq. (C.1).] The
following quantities are then formed:

0,=%1A7/(ATAT+ AJAT+ AAY (C.3)
9, =aa,(A;+A)[A :'(a;?A;' +a,A,)] (C.4)
The intrinsic viscosity can be expressed in terms of these constants

["J]=T25(Q1 +Q2+Q3)+%(41+Q2+‘13) (C.5)

This equation is tabulated in Tables V and VI.

The intrinsic viscosity for anisotropic particles is in general a fourth
rank tensor, with the same symmetries as the elastic stiffness tensor [117]
for the given symmetry of the particle. For example, the intrinsic viscosity
for an aligned triaxial ellipsoid is a fourth rank tensor having the same
symmetry as the elastic stiffness tensor for an orthorhombic crystal [117,
139]. Formally, this can be stated using either the stress to define the
effective viscosity of a single-particle suspension, or using the energy
dissipation rate [14]. In the following, the discussion of Haber and
Brenner is followed [14] in presenting both methods.

Consider an isolated particle, immersed at rest in a homogeneous,
incompressible fluid with viscosity 7,. We restrict consideration to par-
ticles that have a center of symmetry. The traceless rate of strain field is
denoted S, such that if the particle were not there, S=§, would be a
uniform traceless rate of strain tensor. Far away from the particle, the
velocity fields must go to v=_S8;r and the average of S over all space,
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denoted (S), equals S, [14]. Solving Stokes’ equations for the fluid
velocity and pressure fields due to the presence of the rigid particle and
then averaging the viscous stress o, over the volume of the sample gives

o, =2n, [I1+¢¥]:S, (C.6)

where ¢ is the volume fraction of the particles. This result is limited to a
sufficiently dilute suspension so that each particle can be considered to be
independent of the others. The parameter W, -is a fourth rank tensor of
the same symmetry as the particle. If the calculation is carried out in a
periodic array of particles, as was done in the finite element work
explained in Appendix E, then W+, has whichever symmetry is lower, the
particle or the array. For example, when considering a cubic array of
spheres, ¥, has cubic symmetry and is not isotropic like the sphere.

The isotropically averaged intrinsic viscosity that we have studied in
this chapter is obtained by calculating the isotropic average (¥;is), using
the standard definition of rotational tensor averaging [140] and then using
Eq. (3.2) to obtain

n]= (‘I’ijkl) (C.7)

We are operating under the assumption of “overwhelming Brownian
motion” [117], so that the applied shear is weak compared to the
Brownian motion of the particle, so that all orientations are equally
probable. In this case, the quantity W1, is calculated when holding the
particle positionally and orientationally fixed in space. The rotational
average of ¥, then incorporates the fact that all orientations are equally
probable. The opposite case would be the strong applied shear case,
where Brownian motion can be ignored, and the particle has anisotropic
orientation due to the applied shear field. For an anisotropic particle this
would correspond to the elastic case, since in the elastic case a rigid
particle maintains its shape but can orient itself with the applied field.
Since the intrinsic viscosity tensor has the same symmetries as the
equivalent elastic tensor, the averaging procedure discussed above is
exactly the same as taking the Voigt average [141] of the elastic stiffness
tensor for a polycrystalline sample. This procedure has been worked out
for every crystal symmetry of interest and results are available in the
literature. For example, all the particles considered numerically in this
chapter have tetragonal or higher symmetry. Tetragonal symmetry means
square symmetry in the cross-sectional plane, with the third direction
being different (a rectangular parallelipiped, with a = b # ¢, has tetragon-
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al symmetry). The angularly averaged shear modulus (G) is obtained
from the elastic stiffness tensor C;;,, (tetragonal symmetry) by

(G) = ?%[MG +3C}y1q — 3C 155 +12C555; + 6C,545)] (C.8a)
Mg=Cipyy + Chupp +2C5555 —4C 153 (C.8b)

To obtain the rotationally averaged intrinsic viscosity, simply substitute
V.., for Cy,;, and multiply by a factor of 2, because the elastic tensor
averages are defined for a system of notation such that the shear strain is
twice that used for the rate of shear strain in fluid mechanics [142,143].
One should note that in [14] and [117] a factor of 3 is often taken out of
the definition of ¥, so that (¥,,,) is then normalized to equal 1 for a
spherical particle.

The intrinsic viscosity can also be defined via the energy-dissipation
rate. Since this is the way that the finite-element simulations were done
and since it offers an easy way to do the averages numerically, we present
this method as well. We again follow the discussion of [14].

For the same case considered above, it is found that the rotationally

averaged rate of energy dissipation (E) is given by
(E) =2no[1 + [n])S}S5; (C.9)

For tetragonal symmetry and higher it is possible to select the terms of §,
so that the energy dissipation rate E [143]

E=3S 3").‘,*15 21 (C.10)
gives the terms needed to form the average Eq. (C.8). One choice for Sg.,
which gives the correct combination of terms for tetragonal symmetry, is
the following:

S, =[2+V3]'21V30 (C.11a)
S,, = —[2 - V3]'"*/V30 (C.11b)
Sis=—(S,, + 8,)/V30 (C.11c)
Si3=8,,=8,=1/V5 (C.114d)

Computing the energy for this applied rate of strain tensor gives precisely
the combination of terms in Eq. (C.8). By subtracting the original energy
from that found without a particle being present, the rotationally
averaged intrinsic viscosity can be read off from the numerical results.
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APPENDIX D
EXACT SOLUTION OF THE POLARIZATION OF A DUMBBELL

It was not previously noticed that all the mathematical apparatus
necessary for computing the components of «, for the spherical particle
dumbbell had been in place since the publication of a paper by Davis
[144]. The problem is the following: Take two highly conducting spheres
of the same radius connected by a very thin conducting wire so that both
spheres in this dumbbell are at the same potential. Apply an electric field
that is uniform at infinity and solve for the potential. Once this is done,
calculate the normal component of the electric field right at the surface of
the dumbbell, thus giving the charge density 2 (charge/unit area) on the
dumbbell surface. The dipole moment of the dumbbell is then calculated
from the average of 2 r over the surface and divided by the dumbbell
volume. |

Davis [144] gives the solution for the potential when the spheres are
both held at zero potential and this solution is all that is required for
solving our dumbbell problem. In calculating the polarization there are
two difficult integrals that arise, which fortunately have been tabulated by
Apelblat [145]. The required integrals are given by,

fl Pn(X) dx _ 23/2e—(n+112)a (D 1)
-1 (cosh (a) — x)*"? ~ sinh(a) '
f‘ P,(x)dx 2321292y 1 1 + 2 coth(a)] (D.2)
-1 [cosh (a) — x]*"? 3 sinh? (a) '
The polarizability of the dumbbell then equals
o (T)/V, =12(r, = 1)’[1 +2/(r, - 1)}’ Z, (D.3)

a (L)/V,=6(r, —1)°[1+2/(r, — 1)]*'%(4S, + 45, + S,) (D.4)
[o]. = (2a(T)/V, + a,(L)/V,)/3 (D.5)

where r, is the ratio of the center—center separation to the sphere
diameter and the constants Z, and S; are defined by

— n(n+1)
2= 2 Toxpl@n F DI+ 1) (D.6)
5= 2 T+ Dl=T (D.7)
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where cosh(g,) =r,. These infinite sums are rapidly converging so that
numerical computatlon is straightforward. In the limit 7,— o only the
first term of S, is important and we find the simple lumtmg behavior

[o).~r3, r,ow (D.8)

The electric polarizability for two spheres without the wire [46] is quite
different in general. For r,— the intrinsic conductivity [o]. of the
untethered spheres approaches 3 (the single sphere result) and for nearly
touching spheres (r,— 1), [o].. approaches 7£(3)/2 [see Eq. (3.14)].

APPENDIX E
FINITE ELEMENT METHOD COMPUTATION OF [q] AND [o],

Finite element methods [146] are well suited to find the extrema of energy
functionals. In the physical cases considered in this chapter, where
variational principles exist from which the relevant equations can be
derived, the energy functional to be minimized is the actual energy of the
system, where perhaps Lagrange multiplier terms have been added to
enforce constraints. The appropriate functional for elastic problems is the
elastic energy [146]

) 1
Ulelastostatic) = &;Cini€ad T (E.1)
where ¢, is the strain tensor and Cy,, is the elastic stiffness tensor and the
appropnate functional for the conductlwty problem [2] is the dissipated
electrical power

1
U (electrostatic) = 3 f Ego,Ed’r (E.2)

ll]}

where E, is the electric field vector and o;; is the conductivity tensor.

The elastnc—ﬂuld mapping mentioned prewously [17, 102, 103, 147]
implies that a similar variational principle exists for the linearized fluid
problem (Stokes equation), where only terms linear in the velocities are
retained. This fact has been known for some time, being first discussed by
Helmholz [148] and proven and elaborated on by Korteweg [149].
Millikan [150], however, proved that if one is restricted to action integrals
involving only fluid velocities and first-order spatial derivatives, there will
be no variational principle whose Euler equations will give the full
Navier-Stokes equations.

Two recent discussions of the variational principle for viscous fluids
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were given by de Veubeke [151] and Keller et al. [152], where the
pressure is introduced as a Lagrange multiplier [151]:

1 |

8 U {p(V-u)—- Zno,.,.o,.j]d% =0 (E.3)
1 auj au,.)

=7 (a3 (E4)

F=-1n0.6, (E.5)

where F is the rate of energy dissipation, u is the fluid velocity, and p is
the pressure. Carrying out the variation indicated in Eq. (E.2) gives the
linearized steady-state Navier—Stokes equation in the creeping flow limit,
commonly called the Stokes equation. To enforce the incompressibility
condition V-u =0 requires an extra effort on the part of the would-be
solver of Eq. (E.3).

In the finite element solution used in this chapter we used a formula—
tion of the problem described by Zienkiewicz [153] in which the pressure
is ignored and the incompressibility condition is only approximately
maintained via a “penalty method” [146]. A term is added to the energy
dissipation F of the form 1B(V-u)’, where taking a large penalty
parameter (8— =) corresponds to the incompressibile limit (V-u=0).
This method works extremely well, although run times become longer as
the value of B8 is increased. Finite values of 8 imply some degree of
compressibility of-the simulated fluid.

However, it turns out that the intrinsic viscosity, or more specifically,
the extra dissipated energy terms in Eq. (C.9) from Appendix C do not
depend (under steady-state conditions) on the compressibility of the fluid,
which means that the intrinsic viscosity does not depend on the compres-
sibility either [154]. This allowed run times to be considerably shortened,
as much smaller values of 8 could be used with no change in the final
results. The argument goes as follows.

The stress tensor of a compressible isotropic fluid is a function of both
the shear viscosity  and the bulk viscosity ¢ [143]. The total stress tensor
o; is the sum of an ideal fluid pressure component and a viscosity

i
component

o,; = —pd; + 216, (E.6a)

where p is the macroscopic pressure and the viscosity contribution to the
stress tensor 0 reflects the explicit dependence on n and ¢ [143],
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a 6,'}' Buk f auk
6, = (Oij ——3—-(:’;;) + ('2-,5 8, -5;;) (E.6b)

For an incompressible fluid (V-u=0), the viscous stress tensor 9,-,-
evidently reduces to 6, in Eq. (E.4). The compressibility related terms in
Eq. (E.4) can be absorbed into a redefinition of the pressure Py,
which then varies with the local spatial position,

0, = — P om0y + 210, (E.7a)

ij compij

We then observe that the integral of the gradient of P, over any closed
circuit C in the fluid equals zero

350 VP, oy ds =0 (E.7b)

since P, is a single-valued function of position. Consequently, there is
no extra dissipation [154] associated with the fluid compressibility (V- u#
0). Notably, Eq. (E.7b) is independent of the surface boundary con-
dition.

Finally, in actually carrying out the finite element computation for the
viscosity, the “no-slip” boundary condition at a fluid-solid boundary is
enforced by holding the velocity at all computational nodes either at the
boundary or inside the particle fixed at zero during the conjugate gradient
[25] cycles that find the minimum energy. To treat a plate geometry one
simply holds the velocities of all the nodes in the appropriate planar
region fixed at zero. In the analogous electrical problem one holds the
voltage constant at the same nodes as for the fluid problem.

APPENDIX F
ELLIPSE TRANSPORT VIRIAL COEFFICIENTS IN d=2

The intrinsic conductivity and viscosity for an ellipse in a 2D fluid can be
obtained from the triaxial ellipsoid results in three dimensions by taking
appropriate limits and averaging. The average required to obtain virial
coefficients in d =2 involves rotationally averaging around the z axis of
the ellipsoid and letting a; (the semiaxis length in the z direction)
approach infinity. We then need to evaluate A;, A,, and A, from
Appendix B in the limit a,— . From Egs. (B.1) and (B.2) along with
the limit a,— « we find

.......
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A,—2a,/(a, +a,) (F.1)
A,—2a,/(a, +a,) (F.2)
A;—0 (F.3)

and the A; sum rule in d =2 becomes,
A +A,=2 (F.4)
The rotational average in d =2 for the polarization is then
(a.) = (ay, +a,,)/2 (F.5)

since the second-rank polarization tensor is diagonal for orthorhombic
symmetry and higher. The intrinsic conductivity then equals

[U]w = (al + 02)2/(20102), d = 2 (F6)

which agrees with Garboczi et al. [155].

The intrinsic viscosity in d =2 is found in the same way as the average
shear modulus by rotationally averaging an elastic stiffness tensor having
rectangular symmetry around the z-axis: ‘

(G)= [Ciin + Comn + 4C 512 — 2C55,]/8 (F.7)

After inserting the appropriate combinations of A,, A,, and A, into
Haber and Brenner’s formalism given in Appendix C and [14], the
rotationally averaged intrinsic viscosity becomes

[n] =3[0, + Q, +4Q.] (F.8)
where the Q; values are defined in [14]. This reduces to
[n]=(a, + 02)2/(2‘11“2) . (F.9)

which is exactly equal to the intrinsic conductivity [see Eq (F.6)].
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